1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.gnss.antenna;
18
19 import org.hipparchus.util.FastMath;
20
21 /**
22 * Interpolator for 1D phase center variation data.
23 *
24 * @author Luc Maisonobe
25 * @since 9.2
26 */
27 public class OneDVariation implements PhaseCenterVariationFunction {
28
29 /** Start polar angle. */
30 private final double polarStart;
31
32 /** Step between grid points. */
33 private final double polarStep;
34
35 /** Sampled phase center variations. */
36 private final double[] variations;
37
38 /** Simple constructor.
39 * @param polarStart start polar angle
40 * @param polarStep between grid points
41 * @param variations sampled phase center variations
42 */
43 public OneDVariation(final double polarStart, final double polarStep, final double[] variations) {
44 this.polarStart = polarStart;
45 this.polarStep = polarStep;
46 this.variations = variations.clone();
47 }
48
49 /** {@inheritDoc} */
50 @Override
51 public double value(final double polarAngle, final double azimuthAngle) {
52
53 // find surrounding points
54 final int jBase = (int) FastMath.floor((polarAngle - polarStart) / polarStep);
55 final int j = FastMath.max(0, FastMath.min(variations.length - 2, jBase));
56
57 final double pInf = polarStart + j * polarStep;
58 final double pSup = pInf + polarStep;
59
60 final double vInf = variations[j];
61 final double vSup = variations[j + 1];
62
63 // linear interpolation
64 return ((polarAngle - pInf) * vSup + (pSup - polarAngle) * vInf) / polarStep;
65
66 }
67
68 }