1   /* Contributed in the public domain.
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.models.earth;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.Field;
21  import org.hipparchus.analysis.CalculusFieldUnivariateFunction;
22  import org.hipparchus.analysis.UnivariateFunction;
23  import org.hipparchus.analysis.solvers.AllowedSolution;
24  import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver;
25  import org.hipparchus.analysis.solvers.FieldBracketingNthOrderBrentSolver;
26  import org.hipparchus.analysis.solvers.UnivariateSolver;
27  import org.hipparchus.exception.MathRuntimeException;
28  import org.hipparchus.geometry.euclidean.threed.FieldLine;
29  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
30  import org.hipparchus.geometry.euclidean.threed.Line;
31  import org.hipparchus.geometry.euclidean.threed.Vector3D;
32  import org.hipparchus.util.FastMath;
33  import org.orekit.bodies.FieldGeodeticPoint;
34  import org.orekit.bodies.GeodeticPoint;
35  import org.orekit.errors.OrekitException;
36  import org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel;
37  import org.orekit.forces.gravity.potential.GravityFields;
38  import org.orekit.forces.gravity.potential.NormalizedSphericalHarmonicsProvider;
39  import org.orekit.forces.gravity.potential.TideSystem;
40  import org.orekit.frames.FieldStaticTransform;
41  import org.orekit.frames.Frame;
42  import org.orekit.frames.StaticTransform;
43  import org.orekit.time.AbsoluteDate;
44  import org.orekit.time.FieldAbsoluteDate;
45  import org.orekit.utils.TimeStampedPVCoordinates;
46  
47  /**
48   * A geoid is a level surface of the gravity potential of a body. The gravity
49   * potential, W, is split so W = U + T, where U is the normal potential (defined
50   * by the ellipsoid) and T is the anomalous potential.[3](eq. 2-137)
51   *
52   * <p> The {@link #getIntersectionPoint(Line, Vector3D, Frame, AbsoluteDate)}
53   * method is tailored specifically for Earth's geoid. All of the other methods
54   * in this class are general and will work for an arbitrary body.
55   *
56   * <p> There are several components that are needed to define a geoid[1]:
57   *
58   * <ul> <li>Geopotential field. These are the coefficients of the spherical
59   * harmonics: S<sub>n,m</sub> and C<sub>n,m</sub></li>
60   *
61   * <li>Reference Ellipsoid. The ellipsoid is used to define the undulation of
62   * the geoid (distance between ellipsoid and geoid) and U<sub>0</sub> the value
63   * of the normal gravity potential at the surface of the ellipsoid.</li>
64   *
65   * <li>W<sub>0</sub>, the potential at the geoid. The value of the potential on
66   * the level surface. This is taken to be U<sub>0</sub>, the normal gravity
67   * potential at the surface of the {@link ReferenceEllipsoid}.</li>
68   *
69   * <li>Permanent Tide System. This implementation assumes that the geopotential
70   * field and the reference ellipsoid use the same permanent tide system. If the
71   * assumption is false it will produce errors of about 0.5 m. Conversion between
72   * tide systems is a possible improvement.[1,2]</li>
73   *
74   * <li>Topographic Masses. That is mass outside of the geoid, e.g. mountains.
75   * This implementation ignores topographic masses, which causes up to 3m error
76   * in the Himalayas, and ~ 1.5m error in the Rockies. This could be improved
77   * through the use of DTED and calculating height anomalies or using the
78   * correction coefficients.[1]</li> </ul>
79   *
80   * <p> This implementation also assumes that the normal to the reference
81   * ellipsoid is the same as the normal to the geoid. This assumption enables the
82   * equation: (height above geoid) = (height above ellipsoid) - (undulation),
83   * which is used in {@link #transform(GeodeticPoint)} and {@link
84   * #transform(Vector3D, Frame, AbsoluteDate)}.
85   *
86   * <p> In testing, the error in the undulations calculated by this class were
87   * off by less than 3 meters, which matches the assumptions outlined above.
88   *
89   * <p> References:
90   *
91   * <ol> <li>Dru A. Smith. There is no such thing as "The" EGM96 geoid: Subtle
92   * points on the use of a global geopotential model. IGeS Bulletin No. 8:17-28,
93   * 1998. <a href= "http://www.ngs.noaa.gov/PUBS_LIB/EGM96_GEOID_PAPER/egm96_geoid_paper.html"
94   * >http://www.ngs.noaa.gov/PUBS_LIB/EGM96_GEOID_PAPER/egm96_geoid_paper.html</a></li>
95   *
96   * <li> Martin Losch, Verena Seufer. How to Compute Geoid Undulations (Geoid
97   * Height Relative to a Given Reference Ellipsoid) from Spherical Harmonic
98   * Coefficients for Satellite Altimetry Applications. , 2003. <a
99   * href="http://mitgcm.org/~mlosch/geoidcookbook.pdf">mitgcm.org/~mlosch/geoidcookbook.pdf</a>
100  * </li>
101  *
102  * <li>Weikko A. Heiskanen, Helmut Moritz. Physical Geodesy. W. H. Freeman and
103  * Company, 1967. (especially sections 2.13 and equation 2-144 Bruns
104  * Formula)</li>
105  *
106  * <li>S. A. Holmes, W. E. Featherstone. A unified approach to the Clenshaw
107  * summation and the recursive computation of very high degree and order
108  * normalised associated Legendre functions. Journal of Geodesy, 76(5):279,
109  * 2002.</li>
110  *
111  * <li>DMA TR 8350.2. 1984.</li>
112  *
113  * <li>Department of Defense World Geodetic System 1984. 2000. NIMA TR 8350.2
114  * Third Edition, Amendment 1.</li> </ol>
115  *
116  * @author Evan Ward
117  */
118 public class Geoid implements EarthShape {
119 
120     /**
121      * A number larger than the largest undulation. Wikipedia says the geoid
122      * height is in [-106, 85]. I chose 100 to be safe.
123      */
124     private static final double MAX_UNDULATION = 100;
125     /**
126      * A number smaller than the smallest undulation. Wikipedia says the geoid
127      * height is in [-106, 85]. I chose -150 to be safe.
128      */
129     private static final double MIN_UNDULATION = -150;
130     /**
131      * the maximum number of evaluations for the line search in {@link
132      * #getIntersectionPoint(Line, Vector3D, Frame, AbsoluteDate)}.
133      */
134     private static final int MAX_EVALUATIONS = 100;
135 
136     /**
137      * the default date to use when evaluating the {@link #harmonics}. Used when
138      * no other dates are available. Should be removed in a future release.
139      */
140     private final AbsoluteDate defaultDate;
141     /**
142      * the reference ellipsoid.
143      */
144     private final ReferenceEllipsoid referenceEllipsoid;
145     /**
146      * the geo-potential combined with an algorithm for evaluating the spherical
147      * harmonics. The Holmes and Featherstone method is very robust.
148      */
149     private final transient HolmesFeatherstoneAttractionModel harmonics;
150 
151     /**
152      * Creates a geoid from the given geopotential, reference ellipsoid and the
153      * assumptions in the comment for {@link Geoid}.
154      *
155      * @param geopotential       the gravity potential. Only the anomalous
156      *                           potential will be used. It is assumed that the
157      *                           {@code geopotential} and the {@code
158      *                           referenceEllipsoid} are defined in the same
159      *                           frame. Usually a {@link GravityFields#getConstantNormalizedProvider(int,
160      *                           int, AbsoluteDate) constant geopotential} is used to define a
161      *                           time-invariant Geoid.
162      * @param referenceEllipsoid the normal gravity potential.
163      * @throws NullPointerException if {@code geopotential == null ||
164      *                              referenceEllipsoid == null}
165      */
166     public Geoid(final NormalizedSphericalHarmonicsProvider geopotential,
167                  final ReferenceEllipsoid referenceEllipsoid) {
168         // parameter check
169         if (geopotential == null || referenceEllipsoid == null) {
170             throw new NullPointerException();
171         }
172 
173         // subtract the ellipsoid from the geopotential
174         final SubtractEllipsoid potential = new SubtractEllipsoid(geopotential,
175                 referenceEllipsoid);
176 
177         // set instance parameters
178         this.referenceEllipsoid = referenceEllipsoid;
179         this.harmonics = new HolmesFeatherstoneAttractionModel(
180                 referenceEllipsoid.getBodyFrame(), potential);
181         this.defaultDate = AbsoluteDate.ARBITRARY_EPOCH;
182     }
183 
184     @Override
185     public Frame getBodyFrame() {
186         // same as for reference ellipsoid.
187         return this.getEllipsoid().getBodyFrame();
188     }
189 
190     /**
191      * Gets the Undulation of the Geoid, N at the given position. N is the
192      * distance between the {@link #getEllipsoid() reference ellipsoid} and the
193      * geoid. The latitude and longitude parameters are both defined with
194      * respect to the reference ellipsoid. For EGM96 and the WGS84 ellipsoid the
195      * undulation is between -107m and +86m.
196      *
197      * <p> NOTE: Restrictions are not put on the range of the arguments {@code
198      * geodeticLatitude} and {@code longitude}.
199      *
200      * @param geodeticLatitude geodetic latitude (angle between the local normal
201      *                         and the equatorial plane on the reference
202      *                         ellipsoid), in radians.
203      * @param longitude        on the reference ellipsoid, in radians.
204      * @param date             of evaluation. Used for time varying geopotential
205      *                         fields.
206      * @return the undulation in m, positive means the geoid is higher than the
207      * ellipsoid.
208      * @see Geoid
209      * @see <a href="http://en.wikipedia.org/wiki/Geoid">Geoid on Wikipedia</a>
210      */
211     public double getUndulation(final double geodeticLatitude,
212                                 final double longitude,
213                                 final AbsoluteDate date) {
214         /*
215          * equations references are to the algorithm printed in the geoid
216          * cookbook[2]. See comment for Geoid.
217          */
218         // reference ellipsoid
219         final ReferenceEllipsoid ellipsoid = this.getEllipsoid();
220 
221         // position in geodetic coordinates
222         final GeodeticPoint gp = new GeodeticPoint(geodeticLatitude, longitude, 0);
223         // position in Cartesian coordinates, is converted to geocentric lat and
224         // lon in the Holmes and Featherstone class
225         final Vector3D position = ellipsoid.transform(gp);
226 
227         // get normal gravity from ellipsoid, eq 15
228         final double normalGravity = ellipsoid
229                 .getNormalGravity(geodeticLatitude);
230 
231         // calculate disturbing potential, T, eq 30.
232         final double mu = this.harmonics.getMu(date);
233         final double T  = this.harmonics.nonCentralPart(date, position, mu);
234         // calculate undulation, eq 30
235         return T / normalGravity;
236     }
237 
238     @Override
239     public ReferenceEllipsoid getEllipsoid() {
240         return this.referenceEllipsoid;
241     }
242 
243     /**
244      * This class implements equations 20-24 in the geoid cook book.(Losch and
245      * Seufer) It modifies C<sub>2n,0</sub> where n = 1,2,...,5.
246      *
247      * @see "DMA TR 8350.2. 1984."
248      */
249     private static final class SubtractEllipsoid implements
250             NormalizedSphericalHarmonicsProvider {
251         /**
252          * provider of the fully normalized coefficients, includes the reference
253          * ellipsoid.
254          */
255         private final NormalizedSphericalHarmonicsProvider provider;
256         /**
257          * the reference ellipsoid to subtract from {@link #provider}.
258          */
259         private final ReferenceEllipsoid ellipsoid;
260 
261         /**
262          * @param provider  potential used for GM<sub>g</sub> and a<sub>g</sub>,
263          *                  and of course the coefficients Cnm, and Snm.
264          * @param ellipsoid Used to calculate the fully normalized
265          *                  J<sub>2n</sub>
266          */
267         private SubtractEllipsoid(
268                 final NormalizedSphericalHarmonicsProvider provider,
269                 final ReferenceEllipsoid ellipsoid) {
270             super();
271             this.provider = provider;
272             this.ellipsoid = ellipsoid;
273         }
274 
275         @Override
276         public int getMaxDegree() {
277             return this.provider.getMaxDegree();
278         }
279 
280         @Override
281         public int getMaxOrder() {
282             return this.provider.getMaxOrder();
283         }
284 
285         @Override
286         public double getMu() {
287             return this.provider.getMu();
288         }
289 
290         @Override
291         public double getAe() {
292             return this.provider.getAe();
293         }
294 
295         @Override
296         public AbsoluteDate getReferenceDate() {
297             return this.provider.getReferenceDate();
298         }
299 
300         @Override
301         public NormalizedSphericalHarmonics onDate(final AbsoluteDate date) {
302             return new NormalizedSphericalHarmonics() {
303 
304                 /** the original harmonics */
305                 private final NormalizedSphericalHarmonics delegate = provider.onDate(date);
306 
307                 @Override
308                 public double getNormalizedCnm(final int n, final int m) {
309                     return getCorrectedCnm(n, m, this.delegate.getNormalizedCnm(n, m));
310                 }
311 
312                 @Override
313                 public double getNormalizedSnm(final int n, final int m) {
314                     return this.delegate.getNormalizedSnm(n, m);
315                 }
316 
317                 @Override
318                 public AbsoluteDate getDate() {
319                     return date;
320                 }
321             };
322         }
323 
324         /**
325          * Get the corrected Cnm for different GM or a values.
326          *
327          * @param n              degree
328          * @param m              order
329          * @param uncorrectedCnm uncorrected Cnm coefficient
330          * @return the corrected Cnm coefficient.
331          */
332         private double getCorrectedCnm(final int n,
333                                        final int m,
334                                        final double uncorrectedCnm) {
335             double Cnm = uncorrectedCnm;
336             // n = 2,4,6,8, or 10 and m = 0
337             if (m == 0 && n <= 10 && n % 2 == 0 && n > 0) {
338                 // correction factor for different GM and a, 1 if no difference
339                 final double gmRatio = this.ellipsoid.getGM() / this.getMu();
340                 final double aRatio = this.ellipsoid.getEquatorialRadius() /
341                         this.getAe();
342                 /*
343                  * eq 20 in the geoid cook book[2], with eq 3-61 in chapter 3 of
344                  * DMA TR 8350.2
345                  */
346                 // halfN = 1,2,3,4,5 for n = 2,4,6,8,10, respectively
347                 final int halfN = n / 2;
348                 Cnm = Cnm - gmRatio * FastMath.pow(aRatio, halfN) *
349                         this.ellipsoid.getC2n0(halfN);
350             }
351             // return is a modified Cnm
352             return Cnm;
353         }
354 
355         @Override
356         public TideSystem getTideSystem() {
357             return this.provider.getTideSystem();
358         }
359 
360     }
361 
362     /**
363      * {@inheritDoc}
364      *
365      * <p> The intersection point is computed using a line search along the
366      * specified line. This is accurate when the geoid is slowly varying.
367      */
368     @Override
369     public GeodeticPoint getIntersectionPoint(final Line lineInFrame,
370                                               final Vector3D closeInFrame,
371                                               final Frame frame,
372                                               final AbsoluteDate date) {
373         /*
374          * It is assumed that the geoid is slowly varying over it's entire
375          * surface. Therefore there will one local intersection.
376          */
377         // transform to body frame
378         final Frame bodyFrame = this.getBodyFrame();
379         final StaticTransform frameToBody =
380                 frame.getStaticTransformTo(bodyFrame, date);
381         final Vector3D close = frameToBody.transformPosition(closeInFrame);
382         final Line lineInBodyFrame = frameToBody.transformLine(lineInFrame);
383 
384         // set the line's direction so the solved for value is always positive
385         final Line line;
386         if (lineInBodyFrame.getAbscissa(close) < 0) {
387             line = lineInBodyFrame.revert();
388         } else {
389             line = lineInBodyFrame;
390         }
391 
392         final ReferenceEllipsoid ellipsoid = this.getEllipsoid();
393         // calculate end points
394         // distance from line to center of earth, squared
395         final double d2 = line.pointAt(0.0).getNormSq();
396         // the minimum abscissa, squared
397         final double n = ellipsoid.getPolarRadius() + MIN_UNDULATION;
398         final double minAbscissa2 = n * n - d2;
399         // smaller end point of the interval = 0.0 or intersection with
400         // min_undulation sphere
401         final double lowPoint = FastMath.sqrt(FastMath.max(minAbscissa2, 0.0));
402         // the maximum abscissa, squared
403         final double x = ellipsoid.getEquatorialRadius() + MAX_UNDULATION;
404         final double maxAbscissa2 = x * x - d2;
405         // larger end point of the interval
406         final double highPoint = FastMath.sqrt(maxAbscissa2);
407 
408         // line search function
409         final UnivariateFunction heightFunction = x1 -> {
410             try {
411                 final GeodeticPoint geodetic =
412                         transform(line.pointAt(x1), bodyFrame, date);
413                 return geodetic.getAltitude();
414             } catch (OrekitException e) {
415                 // due to frame transform -> re-throw
416                 throw new RuntimeException(e);
417             }
418         };
419 
420         // compute answer
421         if (maxAbscissa2 < 0) {
422             // ray does not pierce bounding sphere -> no possible intersection
423             return null;
424         }
425         // solve line search problem to find the intersection
426         final UnivariateSolver solver = new BracketingNthOrderBrentSolver();
427         try {
428             final double abscissa = solver.solve(MAX_EVALUATIONS, heightFunction, lowPoint, highPoint);
429             // return intersection point
430             return this.transform(line.pointAt(abscissa), bodyFrame, date);
431         } catch (MathRuntimeException e) {
432             // no intersection
433             return null;
434         }
435     }
436 
437     @Override
438     public Vector3D projectToGround(final Vector3D point,
439                                     final AbsoluteDate date,
440                                     final Frame frame) {
441         final GeodeticPoint gp = this.transform(point, frame, date);
442         final GeodeticPoint gpZero =
443                 new GeodeticPoint(gp.getLatitude(), gp.getLongitude(), 0);
444         final StaticTransform bodyToFrame =
445                 this.getBodyFrame().getStaticTransformTo(frame, date);
446         return bodyToFrame.transformPosition(this.transform(gpZero));
447     }
448 
449     /**
450      * {@inheritDoc}
451      *
452      * <p> The intersection point is computed using a line search along the
453      * specified line. This is accurate when the geoid is slowly varying.
454      */
455     @Override
456     public <T extends CalculusFieldElement<T>> FieldGeodeticPoint<T> getIntersectionPoint(final FieldLine<T> lineInFrame,
457                                                                                       final FieldVector3D<T> closeInFrame,
458                                                                                       final Frame frame,
459                                                                                       final FieldAbsoluteDate<T> date) {
460 
461         final Field<T> field = date.getField();
462         /*
463          * It is assumed that the geoid is slowly varying over it's entire
464          * surface. Therefore there will one local intersection.
465          */
466         // transform to body frame
467         final Frame bodyFrame = this.getBodyFrame();
468         final FieldStaticTransform<T> frameToBody = frame.getStaticTransformTo(bodyFrame, date);
469         final FieldVector3D<T> close = frameToBody.transformPosition(closeInFrame);
470         final FieldLine<T> lineInBodyFrame = frameToBody.transformLine(lineInFrame);
471 
472         // set the line's direction so the solved for value is always positive
473         final FieldLine<T> line;
474         if (lineInBodyFrame.getAbscissa(close).getReal() < 0) {
475             line = lineInBodyFrame.revert();
476         } else {
477             line = lineInBodyFrame;
478         }
479 
480         final ReferenceEllipsoid ellipsoid = this.getEllipsoid();
481         // calculate end points
482         // distance from line to center of earth, squared
483         final T d2 = line.pointAt(0.0).getNormSq();
484         // the minimum abscissa, squared
485         final double n = ellipsoid.getPolarRadius() + MIN_UNDULATION;
486         final T minAbscissa2 = d2.negate().add(n * n);
487         // smaller end point of the interval = 0.0 or intersection with
488         // min_undulation sphere
489         final T lowPoint = minAbscissa2.getReal() < 0 ? field.getZero() : minAbscissa2.sqrt();
490         // the maximum abscissa, squared
491         final double x = ellipsoid.getEquatorialRadius() + MAX_UNDULATION;
492         final T maxAbscissa2 = d2.negate().add(x * x);
493         // larger end point of the interval
494         final T highPoint = maxAbscissa2.sqrt();
495 
496         // line search function
497         final CalculusFieldUnivariateFunction<T> heightFunction = z -> {
498             try {
499                 final FieldGeodeticPoint<T> geodetic =
500                         transform(line.pointAt(z), bodyFrame, date);
501                 return geodetic.getAltitude();
502             } catch (OrekitException e) {
503                 // due to frame transform -> re-throw
504                 throw new RuntimeException(e);
505             }
506         };
507 
508         // compute answer
509         if (maxAbscissa2.getReal() < 0) {
510             // ray does not pierce bounding sphere -> no possible intersection
511             return null;
512         }
513         // solve line search problem to find the intersection
514         final FieldBracketingNthOrderBrentSolver<T> solver =
515                         new FieldBracketingNthOrderBrentSolver<>(field.getZero().newInstance(1.0e-14),
516                                                                  field.getZero().newInstance(1.0e-6),
517                                                                  field.getZero().newInstance(1.0e-15),
518                                                                  5);
519         try {
520             final T abscissa = solver.solve(MAX_EVALUATIONS, heightFunction, lowPoint, highPoint,
521                                             AllowedSolution.ANY_SIDE);
522             // return intersection point
523             return this.transform(line.pointAt(abscissa), bodyFrame, date);
524         } catch (MathRuntimeException e) {
525             // no intersection
526             return null;
527         }
528     }
529 
530     @Override
531     public TimeStampedPVCoordinates projectToGround(
532             final TimeStampedPVCoordinates pv,
533             final Frame frame) {
534         throw new UnsupportedOperationException();
535     }
536 
537     /**
538      * {@inheritDoc}
539      *
540      * @param date date of the conversion. Used for computing frame
541      *             transformations and for time dependent geopotential.
542      * @return The surface relative point at the same location. Altitude is
543      * orthometric height, that is height above the {@link Geoid}. Latitude and
544      * longitude are both geodetic and defined with respect to the {@link
545      * #getEllipsoid() reference ellipsoid}.
546      * @see #transform(GeodeticPoint)
547      * @see <a href="http://en.wikipedia.org/wiki/Orthometric_height">Orthometric_height</a>
548      */
549     @Override
550     public GeodeticPoint transform(final Vector3D point, final Frame frame,
551                                    final AbsoluteDate date) {
552         // convert using reference ellipsoid, altitude referenced to ellipsoid
553         final GeodeticPoint ellipsoidal = this.getEllipsoid().transform(
554                 point, frame, date);
555         // convert altitude to orthometric using the undulation.
556         final double undulation = this.getUndulation(ellipsoidal.getLatitude(),
557                 ellipsoidal.getLongitude(), date);
558         // add undulation to the altitude
559         return new GeodeticPoint(
560                 ellipsoidal.getLatitude(),
561                 ellipsoidal.getLongitude(),
562                 ellipsoidal.getAltitude() - undulation
563         );
564     }
565 
566     /**
567      * {@inheritDoc}
568      *
569      * @param date date of the conversion. Used for computing frame
570      *             transformations and for time dependent geopotential.
571      * @return The surface relative point at the same location. Altitude is
572      * orthometric height, that is height above the {@link Geoid}. Latitude and
573      * longitude are both geodetic and defined with respect to the {@link
574      * #getEllipsoid() reference ellipsoid}.
575      * @see #transform(GeodeticPoint)
576      * @see <a href="http://en.wikipedia.org/wiki/Orthometric_height">Orthometric_height</a>
577      */
578     @Override
579     public <T extends CalculusFieldElement<T>> FieldGeodeticPoint<T> transform(final FieldVector3D<T> point, final Frame frame,
580                                                                            final FieldAbsoluteDate<T> date) {
581         // convert using reference ellipsoid, altitude referenced to ellipsoid
582         final FieldGeodeticPoint<T> ellipsoidal = this.getEllipsoid().transform(
583                 point, frame, date);
584         // convert altitude to orthometric using the undulation.
585         final double undulation = this.getUndulation(ellipsoidal.getLatitude().getReal(),
586                                                      ellipsoidal.getLongitude().getReal(),
587                                                      date.toAbsoluteDate());
588         // add undulation to the altitude
589         return new FieldGeodeticPoint<>(
590                 ellipsoidal.getLatitude(),
591                 ellipsoidal.getLongitude(),
592                 ellipsoidal.getAltitude().subtract(undulation)
593         );
594     }
595 
596     /**
597      * {@inheritDoc}
598      *
599      * @param point The surface relative point to transform. Altitude is
600      *              orthometric height, that is height above the {@link Geoid}.
601      *              Latitude and longitude are both geodetic and defined with
602      *              respect to the {@link #getEllipsoid() reference ellipsoid}.
603      * @return point at the same location but as a Cartesian point in the {@link
604      * #getBodyFrame() body frame}.
605      * @see #transform(Vector3D, Frame, AbsoluteDate)
606      */
607     @Override
608     public Vector3D transform(final GeodeticPoint point) {
609         try {
610             // convert orthometric height to height above ellipsoid using undulation
611             // TODO pass in date to allow user to specify
612             final double undulation = this.getUndulation(
613                     point.getLatitude(),
614                     point.getLongitude(),
615                     this.defaultDate
616             );
617             final GeodeticPoint ellipsoidal = new GeodeticPoint(
618                     point.getLatitude(),
619                     point.getLongitude(),
620                     point.getAltitude() + undulation
621             );
622             // transform using reference ellipsoid
623             return this.getEllipsoid().transform(ellipsoidal);
624         } catch (OrekitException e) {
625             //this method, as defined in BodyShape, is not permitted to throw
626             //an OrekitException, so wrap in an exception we can throw.
627             throw new RuntimeException(e);
628         }
629     }
630 
631     /**
632      * {@inheritDoc}
633      *
634      * @param point The surface relative point to transform. Altitude is
635      *              orthometric height, that is height above the {@link Geoid}.
636      *              Latitude and longitude are both geodetic and defined with
637      *              respect to the {@link #getEllipsoid() reference ellipsoid}.
638      * @param <T> type of the field elements
639      * @return point at the same location but as a Cartesian point in the {@link
640      * #getBodyFrame() body frame}.
641      * @see #transform(Vector3D, Frame, AbsoluteDate)
642      * @since 9.0
643      */
644     @Override
645     public <T extends CalculusFieldElement<T>> FieldVector3D<T> transform(final FieldGeodeticPoint<T> point) {
646         try {
647             // convert orthometric height to height above ellipsoid using undulation
648             // TODO pass in date to allow user to specify
649             final double undulation = this.getUndulation(
650                     point.getLatitude().getReal(),
651                     point.getLongitude().getReal(),
652                     this.defaultDate
653             );
654             final FieldGeodeticPoint<T> ellipsoidal = new FieldGeodeticPoint<>(
655                     point.getLatitude(),
656                     point.getLongitude(),
657                     point.getAltitude().add(undulation)
658             );
659             // transform using reference ellipsoid
660             return this.getEllipsoid().transform(ellipsoidal);
661         } catch (OrekitException e) {
662             //this method, as defined in BodyShape, is not permitted to throw
663             //an OrekitException, so wrap in an exception we can throw.
664             throw new RuntimeException(e);
665         }
666     }
667 
668 }