1 /* Copyright 2022-2025 Thales Alenia Space
2 * Licensed to CS Communication & Systèmes (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.models.earth.weather.water;
18
19 import org.hipparchus.CalculusFieldElement;
20 import org.hipparchus.util.FastMath;
21 import org.orekit.models.earth.troposphere.TroposphericModelUtils;
22
23 /** Official model CIPM-2007 (identical to CIPM-1981/91) from Comité International des Poids et Mesures.
24 * <p>
25 * This water vapor model is the one from Giacomo and Davis as indicated in IERS TN 32, chap. 9.
26 * </p>
27 * @see <a href="https://www.nist.gov/system/files/documents/calibrations/CIPM-2007.pdf">Revised
28 * formula for the density of moist air (CIPM-2007), Metrologia 45 (2008) 149–155</a>
29 *
30 * @author Luc Maisonobe
31 * @since 12.1
32 */
33 public class CIPM2007 implements WaterVaporPressureProvider {
34
35 /** Laurent series coefficient for degree +2. */
36 private static final double L_P2 = 1.2378847e-5;
37
38 /** Laurent series coefficient for degree +1. */
39 private static final double L_P1 = -1.9121316e-2;
40
41 /** Laurent series coefficient for degree 0. */
42 private static final double L_0 = 33.93711047;
43
44 /** Laurent series coefficient for degree -1. */
45 private static final double L_M1 = -6343.1645;
46
47 /** Celsius temperature offset. */
48 private static final double CELSIUS = 273.15;
49
50 /** Constant enhancement factor. */
51 private static final double F_0 = 1.00062;
52
53 /** Pressure enhancement factor. */
54 private static final double F_P = 3.14e-6;
55
56 /** Temperature enhancement factor. */
57 private static final double F_T2 = 5.6e-7;
58
59 /** {@inheritDoc} */
60 @Override
61 public double waterVaporPressure(final double p, final double t, final double rh) {
62
63 // saturation water vapor, equation A1.1 (now in Pa, not hPa)
64 final double psv = FastMath.exp(t * (t * L_P2 + L_P1) + L_0 + L_M1 / t);
65
66 // enhancement factor, equation A1.2
67 final double tC = t - CELSIUS;
68 final double fw = TroposphericModelUtils.HECTO_PASCAL.fromSI(p) * F_P + tC * tC * F_T2 + F_0;
69
70 return rh * fw * psv;
71
72 }
73
74 /** {@inheritDoc} */
75 @Override
76 public <T extends CalculusFieldElement<T>> T waterVaporPressure(final T p, final T t, final T rh) {
77
78 // saturation water vapor, equation A1.1 (now in Pa, not hPa)
79 final T psv = FastMath.exp(t.multiply(t.multiply(L_P2).add(L_P1)).add(L_0).add(t.reciprocal().multiply(L_M1)));
80
81 // enhancement factor, equation A1.2
82 final T tC = t.subtract(CELSIUS);
83 final T fw = TroposphericModelUtils.HECTO_PASCAL.fromSI(p).multiply(F_P).add(tC.multiply(tC).multiply(F_T2)).add(F_0);
84
85 return rh.multiply(fw).multiply(psv);
86
87 }
88
89 }