1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.analytical.gnss;
18  
19  import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
20  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
21  import org.hipparchus.geometry.euclidean.threed.Vector3D;
22  import org.hipparchus.util.FastMath;
23  import org.hipparchus.util.FieldSinCos;
24  import org.hipparchus.util.MathArrays;
25  import org.hipparchus.util.MathUtils;
26  import org.hipparchus.util.Precision;
27  import org.orekit.attitudes.Attitude;
28  import org.orekit.attitudes.AttitudeProvider;
29  import org.orekit.data.DataContext;
30  import org.orekit.errors.OrekitException;
31  import org.orekit.errors.OrekitMessages;
32  import org.orekit.frames.Frame;
33  import org.orekit.orbits.CartesianOrbit;
34  import org.orekit.orbits.Orbit;
35  import org.orekit.propagation.SpacecraftState;
36  import org.orekit.propagation.analytical.AbstractAnalyticalPropagator;
37  import org.orekit.propagation.analytical.gnss.data.GLONASSAlmanac;
38  import org.orekit.propagation.analytical.gnss.data.GLONASSNavigationMessage;
39  import org.orekit.propagation.analytical.gnss.data.GLONASSOrbitalElements;
40  import org.orekit.propagation.analytical.gnss.data.GNSSConstants;
41  import org.orekit.time.AbsoluteDate;
42  import org.orekit.time.GLONASSDate;
43  import org.orekit.time.TimeScale;
44  import org.orekit.utils.PVCoordinates;
45  
46  /**
47   * This class aims at propagating a GLONASS orbit from {@link GLONASSOrbitalElements}.
48   * <p>
49   * <b>Caution:</b> The Glonass analytical propagator can only be used with {@link GLONASSAlmanac}.
50   * Using this propagator with a {@link GLONASSNavigationMessage} is prone to error.
51   * </p>
52   *
53   * @see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD-GLONASS-CDMA-General.-Edition-1.0-2016.pdf">
54   *       GLONASS Interface Control Document</a>
55   *
56   * @author Bryan Cazabonne
57   * @since 10.0
58   *
59   */
60  public class GLONASSAnalyticalPropagator extends AbstractAnalyticalPropagator {
61  
62      // Constants
63      /** Constant 7.0 / 3.0. */
64      private static final double SEVEN_THIRD = 7.0 / 3.0;
65  
66      /** Constant 7.0 / 6.0. */
67      private static final double SEVEN_SIXTH = 7.0 / 6.0;
68  
69      /** Constant 7.0 / 24.0. */
70      private static final double SEVEN_24TH = 7.0 / 24.0;
71  
72      /** Constant 49.0 / 72.0. */
73      private static final double FN_72TH = 49.0 / 72.0;
74  
75      /** Value of the earth's rotation rate in rad/s. */
76      private static final double GLONASS_AV = 7.2921150e-5;
77  
78      /** Mean value of inclination for Glonass orbit is equal to 63°. */
79      private static final double GLONASS_MEAN_INCLINATION = 64.8;
80  
81      /** Mean value of Draconian period for Glonass orbit is equal to 40544s : 11 hours 15 minutes 44 seconds. */
82      private static final double GLONASS_MEAN_DRACONIAN_PERIOD = 40544;
83  
84      /** Second degree zonal coefficient of normal potential. */
85      private static final double GLONASS_J20 = 1.08262575e-3;
86  
87      /** Equatorial radius of Earth (m). */
88      private static final double GLONASS_EARTH_EQUATORIAL_RADIUS = 6378136;
89  
90      // Data used to solve Kepler's equation
91      /** First coefficient to compute Kepler equation solver starter. */
92      private static final double A;
93  
94      /** Second coefficient to compute Kepler equation solver starter. */
95      private static final double B;
96  
97      static {
98          final double k1 = 3 * FastMath.PI + 2;
99          final double k2 = FastMath.PI - 1;
100         final double k3 = 6 * FastMath.PI - 1;
101         A  = 3 * k2 * k2 / k1;
102         B  = k3 * k3 / (6 * k1);
103     }
104 
105     /** The GLONASS orbital elements used. */
106     private final GLONASSOrbitalElements glonassOrbit;
107 
108     /** The spacecraft mass (kg). */
109     private final double mass;
110 
111     /** The ECI frame used for GLONASS propagation. */
112     private final Frame eci;
113 
114     /** The ECEF frame used for GLONASS propagation. */
115     private final Frame ecef;
116 
117     /** Data context for propagation. */
118     private final DataContext dataContext;
119 
120     /**
121      * Private constructor.
122      * @param glonassOrbit Glonass orbital elements
123      * @param eci Earth Centered Inertial frame
124      * @param ecef Earth Centered Earth Fixed frame
125      * @param provider Attitude provider
126      * @param mass Satellite mass (kg)
127      * @param context Data context
128      */
129     GLONASSAnalyticalPropagator(final GLONASSOrbitalElements glonassOrbit, final Frame eci,
130                                 final Frame ecef, final AttitudeProvider provider,
131                                 final double mass, final DataContext context) {
132         super(provider);
133         this.dataContext = context;
134         // Stores the GLONASS orbital elements
135         this.glonassOrbit = glonassOrbit;
136         // Sets the start date as the date of the orbital elements
137         setStartDate(glonassOrbit.getDate());
138         // Sets the mass
139         this.mass = mass;
140         // Sets the Earth Centered Inertial frame
141         this.eci  = eci;
142         // Sets the Earth Centered Earth Fixed frame
143         this.ecef = ecef;
144         // Sets initial state
145         final Orbit orbit = propagateOrbit(getStartDate());
146         final Attitude attitude = provider.getAttitude(orbit, orbit.getDate(), orbit.getFrame());
147         super.resetInitialState(new SpacecraftState(orbit, attitude).withMass(mass));
148     }
149 
150     /**
151      * Gets the PVCoordinates of the GLONASS SV in {@link #getECEF() ECEF frame}.
152      *
153      * <p>The algorithm is defined at Appendix M.1 from GLONASS Interface Control Document,
154      * with automatic differentiation added to compute velocity and
155      * acceleration.</p>
156      *
157      * @param date the computation date
158      * @return the GLONASS SV PVCoordinates in {@link #getECEF() ECEF frame}
159      */
160     public PVCoordinates propagateInEcef(final AbsoluteDate date) {
161 
162         // Interval of prediction dTpr
163         final UnivariateDerivative2 dTpr = getdTpr(date);
164 
165         // Zero
166         final UnivariateDerivative2 zero = dTpr.getField().getZero();
167 
168         // The number of whole orbits "w" on a prediction interval
169         final UnivariateDerivative2 w = FastMath.floor(dTpr.divide(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT()));
170 
171         // Current inclination
172         final UnivariateDerivative2 i = zero.newInstance(GLONASS_MEAN_INCLINATION / 180 * GNSSConstants.GLONASS_PI + glonassOrbit.getDeltaI());
173 
174         // Eccentricity
175         final UnivariateDerivative2 e = zero.newInstance(glonassOrbit.getE());
176 
177         // Mean draconique period in orbite w+1 and mean motion
178         final UnivariateDerivative2 tDR = w.multiply(2.0).add(1.0).multiply(glonassOrbit.getDeltaTDot()).
179                                           add(glonassOrbit.getDeltaT()).
180                                           add(GLONASS_MEAN_DRACONIAN_PERIOD);
181         final UnivariateDerivative2 n = tDR.divide(2.0 * GNSSConstants.GLONASS_PI).reciprocal();
182 
183         // Semi-major axis : computed by successive approximation
184         final UnivariateDerivative2 sma = computeSma(tDR, i, e);
185 
186         // (ae / p)^2 term
187         final UnivariateDerivative2 p     = sma.multiply(e.multiply(e).negate().add(1.0));
188         final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
189         final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);
190 
191         // Current longitude of the ascending node
192         final UnivariateDerivative2 lambda = computeLambda(dTpr, n, aeop2, i);
193 
194         // Current argument of perigee
195         final UnivariateDerivative2 pa = computePA(dTpr, n, aeop2, i);
196 
197         // Mean longitude at the instant the spacecraft passes the current ascending node
198         final UnivariateDerivative2 tanPAo2 = FastMath.tan(pa.divide(2.0));
199         final UnivariateDerivative2 coef    = tanPAo2.multiply(FastMath.sqrt(e.negate().add(1.0).divide(e.add(1.0))));
200         final UnivariateDerivative2 e0      = FastMath.atan(coef).multiply(2.0).negate();
201         final UnivariateDerivative2 m1      = pa.add(e0).subtract(FastMath.sin(e0).multiply(e));
202 
203         // Current mean longitude
204         final UnivariateDerivative2 correction = dTpr.
205                                                  subtract(w.multiply(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT())).
206                                                  subtract(w.square().multiply(glonassOrbit.getDeltaTDot()));
207         final UnivariateDerivative2 m = m1.add(n.multiply(correction));
208 
209         // Take into consideration the periodic perturbations
210         final FieldSinCos<UnivariateDerivative2> scPa = FastMath.sinCos(pa);
211         final UnivariateDerivative2 h = e.multiply(scPa.sin());
212         final UnivariateDerivative2 l = e.multiply(scPa.cos());
213         // δa1
214         final UnivariateDerivative2[] d1 = getParameterDifferentials(sma, i, h, l, m1);
215         // δa2
216         final UnivariateDerivative2[] d2 = getParameterDifferentials(sma, i, h, l, m);
217         // Apply corrections
218         final UnivariateDerivative2 smaCorr    = sma.add(d2[0]).subtract(d1[0]);
219         final UnivariateDerivative2 hCorr      = h.add(d2[1]).subtract(d1[1]);
220         final UnivariateDerivative2 lCorr      = l.add(d2[2]).subtract(d1[2]);
221         final UnivariateDerivative2 lambdaCorr = lambda.add(d2[3]).subtract(d1[3]);
222         final UnivariateDerivative2 iCorr      = i.add(d2[4]).subtract(d1[4]);
223         final UnivariateDerivative2 mCorr      = m.add(d2[5]).subtract(d1[5]);
224         final UnivariateDerivative2 eCorr      = FastMath.sqrt(hCorr.multiply(hCorr).add(lCorr.multiply(lCorr)));
225         final UnivariateDerivative2 paCorr;
226         if (eCorr.getValue() == 0.) {
227             paCorr = zero;
228         } else {
229             if (lCorr.getValue() == eCorr.getValue()) {
230                 paCorr = zero.newInstance(0.5 * GNSSConstants.GLONASS_PI);
231             } else if (lCorr.getValue() == -eCorr.getValue()) {
232                 paCorr = zero.newInstance(-0.5 * GNSSConstants.GLONASS_PI);
233             } else {
234                 paCorr = FastMath.atan2(hCorr, lCorr);
235             }
236         }
237 
238         // Eccentric Anomaly
239         final UnivariateDerivative2 mk = mCorr.subtract(paCorr);
240         final UnivariateDerivative2 ek = getEccentricAnomaly(mk, eCorr);
241 
242         // True Anomaly
243         final UnivariateDerivative2 vk =  getTrueAnomaly(ek, eCorr);
244 
245         // Argument of Latitude
246         final UnivariateDerivative2 phik = vk.add(paCorr);
247 
248         // Corrected Radius
249         final UnivariateDerivative2 pCorr = smaCorr.multiply(eCorr.multiply(eCorr).negate().add(1.0));
250         final UnivariateDerivative2 rk    = pCorr.divide(eCorr.multiply(FastMath.cos(vk)).add(1.0));
251 
252         // Positions in orbital plane
253         final FieldSinCos<UnivariateDerivative2> scPhik = FastMath.sinCos(phik);
254         final UnivariateDerivative2 xk = scPhik.cos().multiply(rk);
255         final UnivariateDerivative2 yk = scPhik.sin().multiply(rk);
256 
257         // Coordinates of position
258         final FieldSinCos<UnivariateDerivative2> scL = FastMath.sinCos(lambdaCorr);
259         final FieldSinCos<UnivariateDerivative2> scI = FastMath.sinCos(iCorr);
260         final FieldVector3D<UnivariateDerivative2> positionwithDerivatives =
261                         new FieldVector3D<>(xk.multiply(scL.cos()).subtract(yk.multiply(scL.sin()).multiply(scI.cos())),
262                                             xk.multiply(scL.sin()).add(yk.multiply(scL.cos()).multiply(scI.cos())),
263                                             yk.multiply(scI.sin()));
264 
265         return new PVCoordinates(new Vector3D(positionwithDerivatives.getX().getValue(),
266                                               positionwithDerivatives.getY().getValue(),
267                                               positionwithDerivatives.getZ().getValue()),
268                                  new Vector3D(positionwithDerivatives.getX().getFirstDerivative(),
269                                               positionwithDerivatives.getY().getFirstDerivative(),
270                                               positionwithDerivatives.getZ().getFirstDerivative()),
271                                  new Vector3D(positionwithDerivatives.getX().getSecondDerivative(),
272                                               positionwithDerivatives.getY().getSecondDerivative(),
273                                               positionwithDerivatives.getZ().getSecondDerivative()));
274     }
275 
276     /**
277      * Gets eccentric anomaly from mean anomaly.
278      * <p>The algorithm used to solve the Kepler equation has been published in:
279      * "Procedures for  solving Kepler's Equation", A. W. Odell and R. H. Gooding,
280      * Celestial Mechanics 38 (1986) 307-334</p>
281      * <p>It has been copied from the OREKIT library (KeplerianOrbit class).</p>
282      *
283      * @param mk the mean anomaly (rad)
284      * @param e the eccentricity
285      * @return the eccentric anomaly (rad)
286      */
287     private UnivariateDerivative2 getEccentricAnomaly(final UnivariateDerivative2 mk, final UnivariateDerivative2 e) {
288 
289         // reduce M to [-PI PI] interval
290         final UnivariateDerivative2 reducedM = new UnivariateDerivative2(MathUtils.normalizeAngle(mk.getValue(), 0.0),
291                                                                          mk.getFirstDerivative(),
292                                                                          mk.getSecondDerivative());
293 
294         // compute start value according to A. W. Odell and R. H. Gooding S12 starter
295         UnivariateDerivative2 ek;
296         if (FastMath.abs(reducedM.getValue()) < 1.0 / 6.0) {
297             if (FastMath.abs(reducedM.getValue()) < Precision.SAFE_MIN) {
298                 // this is an Orekit change to the S12 starter.
299                 // If reducedM is 0.0, the derivative of cbrt is infinite which induces NaN appearing later in
300                 // the computation. As in this case E and M are almost equal, we initialize ek with reducedM
301                 ek = reducedM;
302             } else {
303                 // this is the standard S12 starter
304                 ek = reducedM.add(reducedM.multiply(6).cbrt().subtract(reducedM).multiply(e));
305             }
306         } else {
307             if (reducedM.getValue() < 0) {
308                 final UnivariateDerivative2 w = reducedM.add(FastMath.PI);
309                 ek = reducedM.add(w.multiply(-A).divide(w.subtract(B)).subtract(FastMath.PI).subtract(reducedM).multiply(e));
310             } else {
311                 final UnivariateDerivative2 minusW = reducedM.subtract(FastMath.PI);
312                 ek = reducedM.add(minusW.multiply(A).divide(minusW.add(B)).add(FastMath.PI).subtract(reducedM).multiply(e));
313             }
314         }
315 
316         final UnivariateDerivative2 e1 = e.negate().add(1.0);
317         final boolean noCancellationRisk = (e1.getValue() + ek.getValue() * ek.getValue() / 6) >= 0.1;
318 
319         // perform two iterations, each consisting of one Halley step and one Newton-Raphson step
320         for (int j = 0; j < 2; ++j) {
321             final UnivariateDerivative2 f;
322             UnivariateDerivative2 fd;
323             final UnivariateDerivative2 fdd  = ek.sin().multiply(e);
324             final UnivariateDerivative2 fddd = ek.cos().multiply(e);
325             if (noCancellationRisk) {
326                 f  = ek.subtract(fdd).subtract(reducedM);
327                 fd = fddd.subtract(1).negate();
328             } else {
329                 f  = eMeSinE(ek, e).subtract(reducedM);
330                 final UnivariateDerivative2 s = ek.multiply(0.5).sin();
331                 fd = s.multiply(s).multiply(e.multiply(2.0)).add(e1);
332             }
333             final UnivariateDerivative2 dee = f.multiply(fd).divide(f.multiply(0.5).multiply(fdd).subtract(fd.multiply(fd)));
334 
335             // update eccentric anomaly, using expressions that limit underflow problems
336             final UnivariateDerivative2 w = fd.add(dee.multiply(0.5).multiply(fdd.add(dee.multiply(fdd).divide(3))));
337             fd = fd.add(dee.multiply(fdd.add(dee.multiply(0.5).multiply(fdd))));
338             ek = ek.subtract(f.subtract(dee.multiply(fd.subtract(w))).divide(fd));
339         }
340 
341         // expand the result back to original range
342         ek = ek.add(mk.getValue() - reducedM.getValue());
343 
344         // Returns the eccentric anomaly
345         return ek;
346     }
347 
348     /**
349      * Accurate computation of E - e sin(E).
350      *
351      * @param E eccentric anomaly
352      * @param ecc the eccentricity
353      * @return E - e sin(E)
354      */
355     private UnivariateDerivative2 eMeSinE(final UnivariateDerivative2 E, final UnivariateDerivative2 ecc) {
356         UnivariateDerivative2 x = E.sin().multiply(ecc.negate().add(1.0));
357         final UnivariateDerivative2 mE2 = E.negate().multiply(E);
358         UnivariateDerivative2 term = E;
359         UnivariateDerivative2 d    = E.getField().getZero();
360         // the inequality test below IS intentional and should NOT be replaced by a check with a small tolerance
361         for (UnivariateDerivative2 x0 = d.add(Double.NaN); !Double.valueOf(x.getValue()).equals(x0.getValue());) {
362             d = d.add(2);
363             term = term.multiply(mE2.divide(d.multiply(d.add(1))));
364             x0 = x;
365             x = x.subtract(term);
366         }
367         return x;
368     }
369 
370     /** Gets true anomaly from eccentric anomaly.
371     *
372     * @param ek the eccentric anomaly (rad)
373     * @param ecc the eccentricity
374     * @return the true anomaly (rad)
375     */
376     private UnivariateDerivative2 getTrueAnomaly(final UnivariateDerivative2 ek, final UnivariateDerivative2 ecc) {
377         final UnivariateDerivative2 svk = ek.sin().multiply(FastMath.sqrt( ecc.square().negate().add(1.0)));
378         final UnivariateDerivative2 cvk = ek.cos().subtract(ecc);
379         return svk.atan2(cvk);
380     }
381 
382     /**
383      * Get the interval of prediction.
384      *
385      * @param date the considered date
386      * @return the duration from GLONASS orbit Reference epoch (s)
387      */
388     private UnivariateDerivative2 getdTpr(final AbsoluteDate date) {
389         final TimeScale glonass = dataContext.getTimeScales().getGLONASS();
390         final GLONASSDate tEnd = new GLONASSDate(date, glonass);
391         final GLONASSDate tSta = new GLONASSDate(glonassOrbit.getDate(), glonass);
392         final int n  = tEnd.getDayNumber();
393         final int na = tSta.getDayNumber();
394         final int deltaN;
395         if (na == 27) {
396             deltaN = n - na - FastMath.round((float) (n - na) / 1460) * 1460;
397         } else {
398             deltaN = n - na - FastMath.round((float) (n - na) / 1461) * 1461;
399         }
400         final UnivariateDerivative2 ti = new UnivariateDerivative2(tEnd.getSecInDay(), 1.0, 0.0);
401 
402         return ti.subtract(glonassOrbit.getTime()).add(86400 * deltaN);
403     }
404 
405     /**
406      * Computes the semi-major axis of orbit using technique of successive approximations.
407      * @param tDR mean draconique period (s)
408      * @param i current inclination (rad)
409      * @param e eccentricity
410      * @return the semi-major axis (m).
411      */
412     private UnivariateDerivative2 computeSma(final UnivariateDerivative2 tDR,
413                                              final UnivariateDerivative2 i,
414                                              final UnivariateDerivative2 e) {
415 
416         // Zero
417         final UnivariateDerivative2 zero = tDR.getField().getZero();
418 
419         // If one of the input parameter is equal to Double.NaN, an infinite loop can occur.
420         // In that case, we do not compute the value of the semi major axis.
421         // We decided to return a Double.NaN value instead.
422         if (Double.isNaN(tDR.getValue()) || Double.isNaN(i.getValue()) || Double.isNaN(e.getValue())) {
423             return zero.add(Double.NaN);
424         }
425 
426         // Common parameters
427         final UnivariateDerivative2 sinI         = FastMath.sin(i);
428         final UnivariateDerivative2 sin2I        = sinI.multiply(sinI);
429         final UnivariateDerivative2 ome2         = e.multiply(e).negate().add(1.0);
430         final UnivariateDerivative2 ome2Pow3o2   = FastMath.sqrt(ome2).multiply(ome2);
431         final UnivariateDerivative2 pa           = zero.newInstance(glonassOrbit.getPa());
432         final UnivariateDerivative2 cosPA        = FastMath.cos(pa);
433         final UnivariateDerivative2 opecosPA     = e.multiply(cosPA).add(1.0);
434         final UnivariateDerivative2 opecosPAPow2 = opecosPA.multiply(opecosPA);
435         final UnivariateDerivative2 opecosPAPow3 = opecosPAPow2.multiply(opecosPA);
436 
437         // Initial approximation
438         UnivariateDerivative2 tOCK = tDR;
439 
440         // Successive approximations
441         // The process of approximation ends when fulfilling the following condition: |a(n+1) - a(n)| < 1cm
442         UnivariateDerivative2 an   = zero;
443         UnivariateDerivative2 anp1 = zero;
444         boolean isLastStep = false;
445         while (!isLastStep) {
446 
447             // a(n+1) computation
448             final UnivariateDerivative2 tOCKo2p     = tOCK.divide(2.0 * GNSSConstants.GLONASS_PI);
449             final UnivariateDerivative2 tOCKo2pPow2 = tOCKo2p.multiply(tOCKo2p);
450             anp1 = FastMath.cbrt(tOCKo2pPow2.multiply(GNSSConstants.GLONASS_MU));
451 
452             // p(n+1) computation
453             final UnivariateDerivative2 p = anp1.multiply(ome2);
454 
455             // Tock(n+1) computation
456             final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
457             final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);
458             final UnivariateDerivative2 term1 = aeop2.multiply(GLONASS_J20).multiply(1.5);
459             final UnivariateDerivative2 term2 = sin2I.multiply(2.5).negate().add(2.0);
460             final UnivariateDerivative2 term3 = ome2Pow3o2.divide(opecosPAPow2);
461             final UnivariateDerivative2 term4 = opecosPAPow3.divide(ome2);
462             tOCK = tDR.divide(term1.multiply(term2.multiply(term3).add(term4)).negate().add(1.0));
463 
464             // Check convergence
465             if (FastMath.abs(anp1.subtract(an).getReal()) <= 0.01) {
466                 isLastStep = true;
467             }
468 
469             an = anp1;
470         }
471 
472         return an;
473 
474     }
475 
476     /**
477      * Computes the current longitude of the ascending node.
478      * @param dTpr interval of prediction (s)
479      * @param n mean motion (rad/s)
480      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
481      * @param i inclination (rad)
482      * @return the current longitude of the ascending node (rad)
483      */
484     private UnivariateDerivative2 computeLambda(final UnivariateDerivative2 dTpr,
485                                                 final UnivariateDerivative2 n,
486                                                 final UnivariateDerivative2 aeop2,
487                                                 final UnivariateDerivative2 i) {
488         final UnivariateDerivative2 cosI = FastMath.cos(i);
489         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cosI).multiply(1.5 * GLONASS_J20);
490         return dTpr.multiply(precession.add(GLONASS_AV)).negate().add(glonassOrbit.getLambda());
491     }
492 
493     /**
494      * Computes the current argument of perigee.
495      * @param dTpr interval of prediction (s)
496      * @param n mean motion (rad/s)
497      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
498      * @param i inclination (rad)
499      * @return the current argument of perigee (rad)
500      */
501     private UnivariateDerivative2 computePA(final UnivariateDerivative2 dTpr,
502                                             final UnivariateDerivative2 n,
503                                             final UnivariateDerivative2 aeop2,
504                                             final UnivariateDerivative2 i) {
505         final UnivariateDerivative2 cosI  = FastMath.cos(i);
506         final UnivariateDerivative2 cos2I = cosI.multiply(cosI);
507         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cos2I.multiply(5.0).negate().add(1.0)).multiply(0.75 * GLONASS_J20);
508         return dTpr.multiply(precession).negate().add(glonassOrbit.getPa());
509     }
510 
511     /**
512      * Computes the differentials δa<sub>i</sub>.
513      * <p>
514      * The value of i depends of the type of longitude (i = 2 for the current mean longitude;
515      * i = 1 for the mean longitude at the instant the spacecraft passes the current ascending node)
516      * </p>
517      * @param a semi-major axis (m)
518      * @param i inclination (rad)
519      * @param h x component of the eccentricity (rad)
520      * @param l y component of the eccentricity (rad)
521      * @param m longitude (current or at the ascending node instant)
522      * @return the differentials of the orbital parameters
523      */
524     private UnivariateDerivative2[] getParameterDifferentials(final UnivariateDerivative2 a, final UnivariateDerivative2 i,
525                                                               final UnivariateDerivative2 h, final UnivariateDerivative2 l,
526                                                               final UnivariateDerivative2 m) {
527 
528         // B constant
529         final UnivariateDerivative2 aeoa  = a.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
530         final UnivariateDerivative2 aeoa2 = aeoa.multiply(aeoa);
531         final UnivariateDerivative2 b     = aeoa2.multiply(1.5 * GLONASS_J20);
532 
533         // Commons Parameters
534         final FieldSinCos<UnivariateDerivative2> scI   = FastMath.sinCos(i);
535         final FieldSinCos<UnivariateDerivative2> scLk  = FastMath.sinCos(m);
536         final FieldSinCos<UnivariateDerivative2> sc2Lk = FieldSinCos.sum(scLk, scLk);
537         final FieldSinCos<UnivariateDerivative2> sc3Lk = FieldSinCos.sum(scLk, sc2Lk);
538         final FieldSinCos<UnivariateDerivative2> sc4Lk = FieldSinCos.sum(sc2Lk, sc2Lk);
539         final UnivariateDerivative2 cosI   = scI.cos();
540         final UnivariateDerivative2 sinI   = scI.sin();
541         final UnivariateDerivative2 cosI2  = cosI.multiply(cosI);
542         final UnivariateDerivative2 sinI2  = sinI.multiply(sinI);
543         final UnivariateDerivative2 cosLk  = scLk.cos();
544         final UnivariateDerivative2 sinLk  = scLk.sin();
545         final UnivariateDerivative2 cos2Lk = sc2Lk.cos();
546         final UnivariateDerivative2 sin2Lk = sc2Lk.sin();
547         final UnivariateDerivative2 cos3Lk = sc3Lk.cos();
548         final UnivariateDerivative2 sin3Lk = sc3Lk.sin();
549         final UnivariateDerivative2 cos4Lk = sc4Lk.cos();
550         final UnivariateDerivative2 sin4Lk = sc4Lk.sin();
551 
552         // h*cos(nLk), l*cos(nLk), h*sin(nLk) and l*sin(nLk)
553         // n = 1
554         final UnivariateDerivative2 hCosLk = h.multiply(cosLk);
555         final UnivariateDerivative2 hSinLk = h.multiply(sinLk);
556         final UnivariateDerivative2 lCosLk = l.multiply(cosLk);
557         final UnivariateDerivative2 lSinLk = l.multiply(sinLk);
558         // n = 2
559         final UnivariateDerivative2 hCos2Lk = h.multiply(cos2Lk);
560         final UnivariateDerivative2 hSin2Lk = h.multiply(sin2Lk);
561         final UnivariateDerivative2 lCos2Lk = l.multiply(cos2Lk);
562         final UnivariateDerivative2 lSin2Lk = l.multiply(sin2Lk);
563         // n = 3
564         final UnivariateDerivative2 hCos3Lk = h.multiply(cos3Lk);
565         final UnivariateDerivative2 hSin3Lk = h.multiply(sin3Lk);
566         final UnivariateDerivative2 lCos3Lk = l.multiply(cos3Lk);
567         final UnivariateDerivative2 lSin3Lk = l.multiply(sin3Lk);
568         // n = 4
569         final UnivariateDerivative2 hCos4Lk = h.multiply(cos4Lk);
570         final UnivariateDerivative2 hSin4Lk = h.multiply(sin4Lk);
571         final UnivariateDerivative2 lCos4Lk = l.multiply(cos4Lk);
572         final UnivariateDerivative2 lSin4Lk = l.multiply(sin4Lk);
573 
574         // 1 - (3 / 2)*sin²i
575         final UnivariateDerivative2 om3o2xSinI2 = sinI2.multiply(1.5).negate().add(1.0);
576 
577         // Compute Differentials
578         // δa
579         final UnivariateDerivative2 dakT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lCosLk.add(hSinLk));
580         final UnivariateDerivative2 dakT2 = b.multiply(sinI2).multiply(hSinLk.multiply(0.5).subtract(lCosLk.multiply(0.5)).
581                                                                      add(cos2Lk).add(lCos3Lk.multiply(3.5)).add(hSin3Lk.multiply(3.5)));
582         final UnivariateDerivative2 dak = dakT1.add(dakT2);
583 
584         // δh
585         final UnivariateDerivative2 dhkT1 = b.multiply(om3o2xSinI2).multiply(sinLk.add(lSin2Lk.multiply(1.5)).subtract(hCos2Lk.multiply(1.5)));
586         final UnivariateDerivative2 dhkT2 = b.multiply(sinI2).multiply(0.25).multiply(sinLk.subtract(sin3Lk.multiply(SEVEN_THIRD)).add(lSin2Lk.multiply(5.0)).
587                                                                                     subtract(lSin4Lk.multiply(8.5)).add(hCos4Lk.multiply(8.5)).add(hCos2Lk));
588         final UnivariateDerivative2 dhkT3 = lSin2Lk.multiply(cosI2).multiply(b).multiply(0.5).negate();
589         final UnivariateDerivative2 dhk = dhkT1.subtract(dhkT2).add(dhkT3);
590 
591         // δl
592         final UnivariateDerivative2 dlkT1 = b.multiply(om3o2xSinI2).multiply(cosLk.add(lCos2Lk.multiply(1.5)).add(hSin2Lk.multiply(1.5)));
593         final UnivariateDerivative2 dlkT2 = b.multiply(sinI2).multiply(0.25).multiply(cosLk.negate().subtract(cos3Lk.multiply(SEVEN_THIRD)).subtract(hSin2Lk.multiply(5.0)).
594                                                                                     subtract(lCos4Lk.multiply(8.5)).subtract(hSin4Lk.multiply(8.5)).add(lCos2Lk));
595         final UnivariateDerivative2 dlkT3 = hSin2Lk.multiply(cosI2).multiply(b).multiply(0.5);
596         final UnivariateDerivative2 dlk = dlkT1.subtract(dlkT2).add(dlkT3);
597 
598         // δλ
599         final UnivariateDerivative2 dokT1 = b.negate().multiply(cosI);
600         final UnivariateDerivative2 dokT2 = lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
601                                           subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH));
602         final UnivariateDerivative2 dok = dokT1.multiply(dokT2);
603 
604         // δi
605         final UnivariateDerivative2 dik = b.multiply(sinI).multiply(cosI).multiply(0.5).
606                         multiply(lCosLk.negate().add(hSinLk).add(cos2Lk).add(lCos3Lk.multiply(SEVEN_THIRD)).add(hSin3Lk.multiply(SEVEN_THIRD)));
607 
608         // δL
609         final UnivariateDerivative2 dLkT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lSinLk.multiply(1.75).subtract(hCosLk.multiply(1.75)));
610         final UnivariateDerivative2 dLkT2 = b.multiply(sinI2).multiply(3.0).multiply(hCosLk.multiply(SEVEN_24TH).negate().subtract(lSinLk.multiply(SEVEN_24TH)).
611                                                                                    subtract(hCos3Lk.multiply(FN_72TH)).add(lSin3Lk.multiply(FN_72TH)).add(sin2Lk.multiply(0.25)));
612         final UnivariateDerivative2 dLkT3 = b.multiply(cosI2).multiply(lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
613                                                                      subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH)));
614         final UnivariateDerivative2 dLk = dLkT1.add(dLkT2).add(dLkT3);
615 
616         // Final array
617         final UnivariateDerivative2[] differentials = MathArrays.buildArray(a.getField(), 6);
618         differentials[0] = dak.multiply(a);
619         differentials[1] = dhk;
620         differentials[2] = dlk;
621         differentials[3] = dok;
622         differentials[4] = dik;
623         differentials[5] = dLk;
624 
625         return differentials;
626     }
627 
628     /** {@inheritDoc} */
629     protected double getMass(final AbsoluteDate date) {
630         return mass;
631     }
632 
633     /**
634      * Get the Earth gravity coefficient used for GLONASS propagation.
635      * @return the Earth gravity coefficient.
636      */
637     public static double getMU() {
638         return GNSSConstants.GLONASS_MU;
639     }
640 
641     /**
642      * Gets the underlying GLONASS orbital elements.
643      *
644      * @return the underlying GLONASS orbital elements
645      */
646     public GLONASSOrbitalElements getGLONASSOrbitalElements() {
647         return glonassOrbit;
648     }
649 
650     /**
651      * Gets the Earth Centered Inertial frame used to propagate the orbit.
652      * @return the ECI frame
653      */
654     public Frame getECI() {
655         return eci;
656     }
657 
658     /**
659      * Gets the Earth Centered Earth Fixed frame used to propagate GLONASS orbits.
660      * @return the ECEF frame
661      */
662     public Frame getECEF() {
663         return ecef;
664     }
665 
666     /** {@inheritDoc} */
667     public Frame getFrame() {
668         return eci;
669     }
670 
671     /** {@inheritDoc} */
672     public void resetInitialState(final SpacecraftState state) {
673         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
674     }
675 
676     /** {@inheritDoc} */
677     protected void resetIntermediateState(final SpacecraftState state, final boolean forward) {
678         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
679     }
680 
681     /** {@inheritDoc} */
682     public Orbit propagateOrbit(final AbsoluteDate date) {
683         // Gets the PVCoordinates in ECEF frame
684         final PVCoordinates pvaInECEF = propagateInEcef(date);
685         // Transforms the PVCoordinates to ECI frame
686         final PVCoordinates pvaInECI = ecef.getTransformTo(eci, date).transformPVCoordinates(pvaInECEF);
687         // Returns the Cartesian orbit
688         return new CartesianOrbit(pvaInECI, eci, date, GNSSConstants.GLONASS_MU);
689     }
690 
691 }