1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.analytical.tle;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.util.FastMath;
21  import org.hipparchus.util.FieldSinCos;
22  import org.hipparchus.util.MathArrays;
23  import org.hipparchus.util.MathUtils;
24  import org.hipparchus.util.SinCos;
25  import org.orekit.annotation.DefaultDataContext;
26  import org.orekit.attitudes.AttitudeProvider;
27  import org.orekit.data.DataContext;
28  import org.orekit.frames.Frame;
29  import org.orekit.time.DateTimeComponents;
30  import org.orekit.utils.Constants;
31  
32  
33  /** This class contains the methods that compute deep space perturbation terms.
34   * <p>
35   * The user should not bother in this class since it is handled internaly by the
36   * {@link TLEPropagator}.
37   * </p>
38   * <p>This implementation is largely inspired from the paper and source code <a
39   * href="https://www.celestrak.com/publications/AIAA/2006-6753/">Revisiting Spacetrack
40   * Report #3</a> and is fully compliant with its results and tests cases.</p>
41   * @author Felix R. Hoots, Ronald L. Roehrich, December 1980 (original fortran)
42   * @author David A. Vallado, Paul Crawford, Richard Hujsak, T.S. Kelso (C++ translation and improvements)
43   * @author Fabien Maussion (java translation)
44   * @author Thomas Paulet (field translation)
45   * @since 11.0
46   * @param <T> type of the field elements
47   */
48  public class FieldDeepSDP4<T extends CalculusFieldElement<T>> extends FieldSDP4<T> {
49  
50      // CHECKSTYLE: stop JavadocVariable check
51  
52      /** Integration step (seconds). */
53      private static final double SECULAR_INTEGRATION_STEP  = 720.0;
54  
55      /** Intermediate values. */
56      private double thgr;
57      private T xnq;
58      private T omegaq;
59      private double zcosil;
60      private double zsinil;
61      private double zsinhl;
62      private double zcoshl;
63      private double zmol;
64      private double zcosgl;
65      private double zsingl;
66      private double zmos;
67      private T savtsn;
68  
69      private T ee2;
70      private T e3;
71      private T xi2;
72      private T xi3;
73      private T xl2;
74      private T xl3;
75      private T xl4;
76      private T xgh2;
77      private T xgh3;
78      private T xgh4;
79      private T xh2;
80      private T xh3;
81  
82      private T d2201;
83      private T d2211;
84      private T d3210;
85      private T d3222;
86      private T d4410;
87      private T d4422;
88      private T d5220;
89      private T d5232;
90      private T d5421;
91      private T d5433;
92      private T xlamo;
93  
94      private T sse;
95      private T ssi;
96      private T ssl;
97      private T ssh;
98      private T ssg;
99      private T se2;
100     private T si2;
101     private T sl2;
102     private T sgh2;
103     private T sh2;
104     private T se3;
105     private T si3;
106     private T sl3;
107     private T sgh3;
108     private T sh3;
109     private T sl4;
110     private T sgh4;
111 
112     private T del1;
113     private T del2;
114     private T del3;
115     private T xfact;
116     private T xli;
117     private T xni;
118     private T atime;
119 
120     private T pe;
121     private T pinc;
122     private T pl;
123     private T pgh;
124     private T ph;
125 
126     private T[] derivs;
127 
128     // CHECKSTYLE: resume JavadocVariable check
129 
130     /** Flag for resonant orbits. */
131     private boolean resonant;
132 
133     /** Flag for synchronous orbits. */
134     private boolean synchronous;
135 
136     /** Flag for compliance with Dundee modifications. */
137     private boolean isDundeeCompliant = true;
138 
139     /** Constructor for a unique initial TLE.
140      *
141      * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
142      *
143      * @param initialTLE the TLE to propagate.
144      * @param attitudeProvider provider for attitude computation
145      * @param mass spacecraft mass (kg)
146      * @param parameters SGP4 and SDP4 model parameters
147      * @see #FieldDeepSDP4(FieldTLE, AttitudeProvider, CalculusFieldElement, Frame, CalculusFieldElement[])
148      */
149     @DefaultDataContext
150     public FieldDeepSDP4(final FieldTLE<T> initialTLE, final AttitudeProvider attitudeProvider,
151                     final T mass, final T[] parameters) {
152         this(initialTLE, attitudeProvider, mass,
153                 DataContext.getDefault().getFrames().getTEME(), parameters);
154     }
155 
156     /** Constructor for a unique initial TLE.
157      * @param initialTLE the TLE to propagate.
158      * @param attitudeProvider provider for attitude computation
159      * @param mass spacecraft mass (kg)
160      * @param teme the TEME frame to use for propagation.
161      * @param parameters SGP4 and SDP4 model parameters
162      */
163     public FieldDeepSDP4(final FieldTLE<T> initialTLE,
164                          final AttitudeProvider attitudeProvider,
165                          final T mass,
166                          final Frame teme,
167                          final T[] parameters) {
168         super(initialTLE, attitudeProvider, mass, teme, parameters);
169     }
170 
171     /** Computes luni - solar terms from initial coordinates and epoch.
172      */
173     protected void luniSolarTermsComputation() {
174 
175         final T zero = tle.getPerigeeArgument().getField().getZero();
176         final T pi   = zero.getPi();
177 
178         final FieldSinCos<T> scg  = FastMath.sinCos(tle.getPerigeeArgument());
179         final T sing = scg.sin();
180         final T cosg = scg.cos();
181 
182         final FieldSinCos<T> scq  = FastMath.sinCos(tle.getRaan());
183         final T sinq = scq.sin();
184         final T cosq = scq.cos();
185         final T aqnv = a0dp.reciprocal();
186 
187         // Compute julian days since 1900
188         final double daysSince1900 = (tle.getDate()
189                 .getComponents(utc)
190                 .offsetFrom(DateTimeComponents.JULIAN_EPOCH)) /
191                 Constants.JULIAN_DAY - 2415020;
192 
193         double cc = TLEConstants.C1SS;
194         double ze = TLEConstants.ZES;
195         double zn = TLEConstants.ZNS;
196         T zsinh = sinq;
197         T zcosh = cosq;
198 
199         thgr = thetaG(tle.getDate());
200         xnq = xn0dp;
201         omegaq = tle.getPerigeeArgument();
202 
203         final double xnodce = 4.5236020 - 9.2422029e-4 * daysSince1900;
204         final SinCos scTem  = FastMath.sinCos(xnodce);
205         final double stem = scTem.sin();
206         final double ctem = scTem.cos();
207         final double c_minus_gam = 0.228027132 * daysSince1900 - 1.1151842;
208         final double gam = 5.8351514 + 0.0019443680 * daysSince1900;
209 
210         zcosil = 0.91375164 - 0.03568096 * ctem;
211         zsinil = FastMath.sqrt(1.0 - zcosil * zcosil);
212         zsinhl = 0.089683511 * stem / zsinil;
213         zcoshl = FastMath.sqrt(1.0 - zsinhl * zsinhl);
214         zmol = MathUtils.normalizeAngle(c_minus_gam, pi.getReal());
215 
216         double zx = 0.39785416 * stem / zsinil;
217         final double zy = zcoshl * ctem + 0.91744867 * zsinhl * stem;
218         zx = FastMath.atan2( zx, zy) + gam - xnodce;
219         final SinCos scZx = FastMath.sinCos(zx);
220         zcosgl = scZx.cos();
221         zsingl = scZx.sin();
222         zmos = MathUtils.normalizeAngle(6.2565837 + 0.017201977 * daysSince1900, pi.getReal());
223 
224         // Do solar terms
225         savtsn = zero.newInstance(1e20);
226 
227         T zcosi = zero.newInstance(0.91744867);
228         T zsini = zero.newInstance(0.39785416);
229         T zsing = zero.newInstance(-0.98088458);
230         T zcosg = zero.newInstance(0.1945905);
231 
232         T se =  zero;
233         T sgh = zero;
234         T sh =  zero;
235         T si =  zero;
236         T sl =  zero;
237 
238         // There was previously some convoluted logic here, but it boils
239         // down to this:  we compute the solar terms,  then the lunar terms.
240         // On a second pass,  we recompute the solar terms, taking advantage
241         // of the improved data that resulted from computing lunar terms.
242         for (int iteration = 0; iteration < 2; ++iteration) {
243             final T a1  = zcosh.multiply(zcosg).add(zsinh.multiply(zsing).multiply(zcosi));
244             final T a3  = zcosh.multiply(zsing.negate()).add(zsinh.multiply(zcosg).multiply(zcosi));
245             final T a7  = zsinh.negate().multiply(zcosg).add(zcosh.multiply(zcosi).multiply(zsing));
246             final T a8  = zsing.multiply(zsini);
247             final T a9  = zsinh.multiply(zsing).add(zcosh.multiply(zcosi).multiply(zcosg));
248             final T a10 = zcosg.multiply(zsini);
249             final T a2  = cosi0.multiply(a7).add(sini0.multiply(a8));
250             final T a4  = cosi0.multiply(a9).add(sini0.multiply(a10));
251             final T a5  = sini0.negate().multiply(a7).add(cosi0.multiply(a8));
252             final T a6  = sini0.negate().multiply(a9).add(cosi0.multiply(a10));
253             final T x1  = a1.multiply(cosg).add(a2.multiply(sing));
254             final T x2  = a3.multiply(cosg).add(a4.multiply(sing));
255             final T x3  = a1.negate().multiply(sing).add(a2.multiply(cosg));
256             final T x4  = a3.negate().multiply(sing).add(a4.multiply(cosg));
257             final T x5  = a5.multiply(sing);
258             final T x6  = a6.multiply(sing);
259             final T x7  = a5.multiply(cosg);
260             final T x8  = a6.multiply(cosg);
261             final T z31 = x1.square().multiply(12).subtract(x3.square().multiply(3));
262             final T z32 = x1.multiply(x2).multiply(24).subtract(x3.multiply(x4).multiply(6));
263             final T z33 = x2.square().multiply(12).subtract(x4.square().multiply(3));
264             final T z11 = a1.multiply(-6).multiply(a5).add(e0sq.multiply(x1.multiply(x7).multiply(-24).add(x3.multiply(x5).multiply(-6))));
265             final T z12 = a1.multiply(a6).add(a3.multiply(a5)).multiply(-6).add(
266                                 e0sq.multiply(x2.multiply(x7).add(x1.multiply(x8)).multiply(-24).add(
267                                 x3.multiply(x6).add(x4.multiply(x5)).multiply(-6))));
268             final T z13 = a3.multiply(a6).multiply(-6).add(e0sq.multiply(
269                                x2.multiply(x8).multiply(-24).subtract(x4.multiply(x6).multiply(6))));
270             final T z21 = a2.multiply(a5).multiply(6).add(e0sq.multiply(
271                                x1.multiply(x5).multiply(24).subtract(x3.multiply(x7).multiply(6))));
272             final T z22 = a4.multiply(a5).add(a2.multiply(a6)).multiply(6).add(
273                                e0sq.multiply(x2.multiply(x5).add(x1.multiply(x6)).multiply(24).subtract(
274                                x4.multiply(x7).add(x3.multiply(x8)).multiply(6))));
275             final T z23 = a4.multiply(a6).multiply(6).add(e0sq.multiply(x2.multiply(x6).multiply(24).subtract(x4.multiply(x8).multiply(6))));
276             final T s3  = xnq.reciprocal().multiply(cc);
277             final T s2  = beta0.reciprocal().multiply(s3.multiply(-0.5));
278             final T s4  = s3.multiply(beta0);
279             final T s1  = tle.getE().multiply(s4).multiply(-15);
280             final T s5  = x1.multiply(x3).add(x2.multiply(x4));
281             final T s6  = x2.multiply(x3).add(x1.multiply(x4));
282             final T s7  = x2.multiply(x4).subtract(x1.multiply(x3));
283             T z1 = a1.square().add(a2.square()).multiply(3).add(z31.multiply(e0sq));
284             T z2 = a1.multiply(a3).add(a2.multiply(a4)).multiply(6).add(z32.multiply(e0sq));
285             T z3 = a3.square().add(a4.square()).multiply(3).add(z33.multiply(e0sq));
286 
287             z1 = z1.add(z1).add(beta02.multiply(z31));
288             z2 = z2.add(z2).add(beta02.multiply(z32));
289             z3 = z3.add(z3).add(beta02.multiply(z33));
290             se = s1.multiply(zn).multiply(s5);
291             si = s2.multiply(zn).multiply(z11.add(z13));
292             sl = s3.multiply(-zn).multiply(z1.add(z3).subtract(14).subtract(e0sq.multiply(6)));
293             sgh = s4.multiply(zn).multiply(z31.add(z33).subtract(6));
294             if (tle.getI().getReal() < pi.divide(60.0).getReal()) {
295                 // inclination smaller than 3 degrees
296                 sh = zero;
297             } else {
298                 sh = s2.multiply(-zn).multiply(z21.add(z23));
299             }
300             ee2  = s1.multiply(s6).multiply(2);
301             e3   = s1.multiply(s7).multiply(2);
302             xi2  = s2.multiply(z12).multiply(2);
303             xi3  = s2.multiply(z13.subtract(z11)).multiply(2);
304             xl2  = s3.multiply(z2).multiply(-2);
305             xl3  = s3.multiply(z3.subtract(z1)).multiply(-2);
306             xl4  = s3.multiply(e0sq.multiply(-9).add(-21)).multiply(ze).multiply(-2);
307             xgh2 = s4.multiply(z32).multiply(2);
308             xgh3 = s4.multiply(z33.subtract(z31)).multiply(2);
309             xgh4 = s4.multiply(ze).multiply(-18);
310             xh2  = s2.multiply(z22).multiply(-2);
311             xh3  = s2.multiply(z23.subtract(z21)).multiply(-2);
312 
313             if (iteration == 0) { // we compute lunar terms only on the first pass:
314                 sse = se;
315                 ssi = si;
316                 ssl = sl;
317                 ssh = (tle.getI().getReal() < pi.divide(60.0).getReal()) ? zero : sh.divide(sini0);
318                 ssg = sgh.subtract(cosi0.multiply(ssh));
319                 se2 = ee2;
320                 si2 = xi2;
321                 sl2 = xl2;
322                 sgh2 = xgh2;
323                 sh2 = xh2;
324                 se3 = e3;
325                 si3 = xi3;
326                 sl3 = xl3;
327                 sgh3 = xgh3;
328                 sh3 = xh3;
329                 sl4 = xl4;
330                 sgh4 = xgh4;
331                 zcosg = zero.newInstance(zcosgl);
332                 zsing = zero.newInstance(zsingl);
333                 zcosi = zero.newInstance(zcosil);
334                 zsini = zero.newInstance(zsinil);
335                 zcosh = cosq.multiply(zcoshl).add(sinq.multiply(zsinhl));
336                 zsinh = sinq.multiply(zcoshl).subtract(cosq.multiply(zsinhl));
337                 zn = TLEConstants.ZNL;
338                 cc = TLEConstants.C1L;
339                 ze = TLEConstants.ZEL;
340             }
341         } // end of solar - lunar - solar terms computation
342 
343         sse = sse.add(se);
344         ssi = ssi.add(si);
345         ssl = ssl.add(sl);
346         ssg = ssg.add(sgh).subtract((tle.getI().getReal() < pi.divide(60.0).getReal()) ? zero : (cosi0.divide(sini0).multiply(sh)));
347         ssh = ssh.add((tle.getI().getReal() < pi.divide(60.0).getReal()) ? zero : sh.divide(sini0));
348 
349 
350 
351         //        Start the resonant-synchronous tests and initialization
352 
353         T bfact = zero;
354 
355         // if mean motion is 1.893053 to 2.117652 revs/day, and eccentricity >= 0.5,
356         // start of the 12-hour orbit, e > 0.5 section
357         if (xnq.getReal() >= 0.00826 && xnq.getReal() <= 0.00924 && tle.getE().getReal() >= 0.5) {
358 
359             final T g201  = tle.getE().subtract(0.64).negate().multiply(0.440).add(-0.306);
360             final T eoc   = tle.getE().multiply(e0sq);
361             final T sini2 = sini0.multiply(sini0);
362             final T f220  = cosi0.multiply(2).add(theta2).add(1).multiply(0.75);
363             final T f221  = sini2.multiply(1.5);
364             final T f321  = sini0.multiply(1.875).multiply(cosi0.multiply(2).negate().subtract(theta2.multiply(3)).add(1));
365             final T f322  = sini0.multiply(-1.875).multiply(cosi0.multiply(2).subtract(theta2.multiply(3)).add(1));
366             final T f441  = sini2.multiply(f220).multiply(35);
367             final T f442  = sini2.multiply(sini2).multiply(39.3750);
368             final T f522  = sini0.multiply(9.84375).multiply(sini2.multiply(cosi0.multiply(-2).add(theta2.multiply(-5)).add(1.0)).add(
369                                     cosi0.multiply(4.0).add(theta2.multiply(6.0)).add(-2).multiply(0.33333333)));
370             final T f523  = sini0.multiply(sini2.multiply(cosi0.multiply(-4).add(theta2.multiply(10)).add(-2)).multiply(4.92187512).add(
371                                     cosi0.multiply(2).subtract(theta2.multiply(3)).add(1).multiply(6.56250012)));
372             final T f542  = sini0.multiply(29.53125).multiply(cosi0.multiply(-8).add(2).add(
373                                     theta2.multiply(cosi0.multiply(8).add(theta2.multiply(10)).add(-12))));
374             final T f543  = sini0.multiply(29.53125).multiply(cosi0.multiply(-8).add(-2).add(
375                                     theta2.multiply(cosi0.multiply(8).subtract(theta2.multiply(10)).add(12))));
376             final T g211;
377             final T g310;
378             final T g322;
379             final T g410;
380             final T g422;
381             final T g520;
382 
383             resonant = true;       // it is resonant...
384             synchronous = false;     // but it's not synchronous
385 
386             // Geopotential resonance initialization for 12 hour orbits :
387             if (tle.getE().getReal() <= 0.65) {
388                 g211 = tle.getE().multiply( -13.247).add(  e0sq.multiply(   16.290)).add(                                  3.616);
389                 g310 = tle.getE().multiply( 117.390).add(  e0sq.multiply( -228.419)).add(  eoc.multiply( 156.591)).add(  -19.302);
390                 g322 = tle.getE().multiply(109.7927).add(  e0sq.multiply(-214.6334)).add(  eoc.multiply(146.5816)).add( -18.9068);
391                 g410 = tle.getE().multiply( 242.694).add(  e0sq.multiply( -471.094)).add(  eoc.multiply( 313.953)).add(  -41.122);
392                 g422 = tle.getE().multiply( 841.880).add(  e0sq.multiply(-1629.014)).add(  eoc.multiply(1083.435)).add( -146.407);
393                 g520 = tle.getE().multiply(3017.977).add(  e0sq.multiply(-5740.032)).add(  eoc.multiply(3708.276)).add( -532.114);
394             } else  {
395                 g211 = tle.getE().multiply( 331.819).add(  e0sq.multiply( -508.738)).add(  eoc.multiply( 266.724)).add(  -72.099);
396                 g310 = tle.getE().multiply(1582.851).add(  e0sq.multiply(-2415.925)).add(  eoc.multiply(1246.113)).add( -346.844);
397                 g322 = tle.getE().multiply(1554.908).add(  e0sq.multiply(-2366.899)).add(  eoc.multiply(1215.972)).add( -342.585);
398                 g410 = tle.getE().multiply(4758.686).add(  e0sq.multiply(-7193.992)).add(  eoc.multiply(3651.957)).add(-1052.797);
399                 g422 = tle.getE().multiply(16178.11).add(  e0sq.multiply(-24462.77)).add(  eoc.multiply(12422.52)).add( -3581.69);
400                 if (tle.getE().getReal() <= 0.715) {
401                     g520 = tle.getE().multiply(-4664.75).add(  e0sq.multiply(  3763.64)).add(                                1464.74);
402                 } else {
403                     g520 = tle.getE().multiply(29936.92).add(  e0sq.multiply(-54087.36)).add(  eoc.multiply(31324.56)).add( -5149.66);
404                 }
405             }
406 
407             final T g533;
408             final T g521;
409             final T g532;
410             if (tle.getE().getReal() < 0.7) {
411                 g533 = tle.getE().multiply(  4988.61).add(  e0sq.multiply(  -9064.77)).add(  eoc.multiply(  5542.21)).add(  -919.2277);
412                 g521 = tle.getE().multiply(4568.6173).add(  e0sq.multiply(-8491.4146)).add(  eoc.multiply( 5337.524)).add( -822.71072);
413                 g532 = tle.getE().multiply(  4690.25).add(  e0sq.multiply(  -8624.77)).add(  eoc.multiply(   5341.4)).add(   -853.666);
414             } else {
415                 g533 = tle.getE().multiply(161616.52).add(  e0sq.multiply( -229838.2)).add(  eoc.multiply(109377.94)).add(  -37995.78);
416                 g521 = tle.getE().multiply(218913.95).add(  e0sq.multiply(-309468.16)).add(  eoc.multiply(146349.42)).add( -51752.104);
417                 g532 = tle.getE().multiply(170470.89).add(  e0sq.multiply(-242699.48)).add(  eoc.multiply(115605.82)).add(  -40023.88);
418             }
419 
420             T temp1 = xnq.multiply(xnq).multiply(aqnv).multiply(aqnv).multiply(3);
421             T temp  = temp1.multiply(TLEConstants.ROOT22);
422             d2201   = temp.multiply(f220).multiply(g201);
423             d2211   = temp.multiply(f221).multiply(g211);
424             temp1   = temp1.multiply(aqnv);
425             temp    = temp1.multiply(TLEConstants.ROOT32);
426             d3210   = temp.multiply(f321).multiply(g310);
427             d3222   = temp.multiply(f322).multiply(g322);
428             temp1   = temp1.multiply(aqnv);
429             temp    = temp1.multiply(2 * TLEConstants.ROOT44);
430             d4410   = temp.multiply(f441).multiply(g410);
431             d4422   = temp.multiply(f442).multiply(g422);
432             temp1   = temp1.multiply(aqnv);
433             temp    = temp1.multiply(TLEConstants.ROOT52);
434             d5220   = temp.multiply(f522).multiply(g520);
435             d5232   = temp.multiply(f523).multiply(g532);
436             temp    = temp1.multiply(2 * TLEConstants.ROOT54);
437             d5421   = temp.multiply(f542).multiply(g521);
438             d5433   = temp.multiply(f543).multiply(g533);
439             xlamo   = tle.getMeanAnomaly().add(tle.getRaan()).add(tle.getRaan()).subtract(thgr + thgr);
440             bfact   = xmdot.add(xnodot).add(xnodot).subtract(TLEConstants.THDT + TLEConstants.THDT);
441             bfact   = bfact.add(ssl).add(ssh).add(ssh);
442         } else if (xnq.getReal() < 0.0052359877 && xnq.getReal() > 0.0034906585) {
443             // if mean motion is .8 to 1.2 revs/day : (geosynch)
444 
445             final T cosio_plus_1 = cosi0.add(1.0);
446             final T g200 = e0sq.multiply(e0sq.multiply(0.8125).add(-2.5)).add(1);
447             final T g300 = e0sq.multiply(e0sq.multiply(6.60937).add(-6)).add(1);
448             final T f311 = sini0.multiply(0.9375).multiply(sini0.multiply(cosi0.multiply(3).add(1))).subtract(cosio_plus_1.multiply(0.75));
449             final T g310 = e0sq.multiply(2).add(1);
450             final T f220 = cosio_plus_1.multiply(cosio_plus_1).multiply(0.75);
451             final T f330 = f220.multiply(cosio_plus_1).multiply(2.5);
452 
453             resonant = true;
454             synchronous = true;
455 
456             // Synchronous resonance terms initialization
457             del1 = xnq.multiply(xnq).multiply(aqnv).multiply(aqnv).multiply(3);
458             del2 = del1.multiply(f220).multiply(g200).multiply(2 * TLEConstants.Q22);
459             del3 = del1.multiply(f330).multiply(g300).multiply(aqnv).multiply(3 * TLEConstants.Q33);
460             del1 = del1.multiply(f311).multiply(g310).multiply(TLEConstants.Q31).multiply(aqnv);
461             xlamo = tle.getMeanAnomaly().add(tle.getRaan()).add(tle.getPerigeeArgument()).subtract(thgr);
462             bfact = xmdot.add(omgdot).add(xnodot).subtract(TLEConstants.THDT);
463             bfact = bfact.add(ssl).add(ssg).add(ssh);
464         } else {
465             // it's neither a high-e 12-hours orbit nor a geosynchronous:
466             resonant = false;
467             synchronous = false;
468         }
469 
470         if (resonant) {
471             xfact = bfact.subtract(xnq);
472 
473             // Initialize integrator
474             xli   = xlamo;
475             xni   = xnq;
476             atime = zero;
477         }
478         derivs = MathArrays.buildArray(xnq.getField(), 2);
479     }
480 
481     /** Computes secular terms from current coordinates and epoch.
482      * @param t offset from initial epoch (minutes)
483      */
484     protected void deepSecularEffects(final T t)  {
485 
486         xll     = xll.add(ssl.multiply(t));
487         omgadf  = omgadf.add(ssg.multiply(t));
488         xnode   = xnode.add(ssh.multiply(t));
489         em      = tle.getE().add(sse.multiply(t));
490         xinc    = tle.getI().add(ssi.multiply(t));
491 
492         if (resonant) {
493             // If we're closer to t = 0 than to the currently-stored data
494             // from the previous call to this function,  then we're
495             // better off "restarting",  going back to the initial data.
496             // The Dundee code rigs things up to _always_ take 720-minute
497             // steps from epoch to end time,  except for the final step.
498             // Easiest way to arrange similar behavior in this code is
499             // just to always do a restart,  if we're in Dundee-compliant
500             // mode.
501             if (FastMath.abs(t).getReal() < FastMath.abs(t.subtract(atime)).getReal() || isDundeeCompliant)  {
502                 // Epoch restart
503                 atime = t.getField().getZero();
504                 xni = xnq;
505                 xli = xlamo;
506             }
507             boolean lastIntegrationStep = false;
508             // if |step|>|step max| then do one step at step max
509             while (!lastIntegrationStep) {
510                 double delt = t.subtract(atime).getReal();
511                 if (delt > SECULAR_INTEGRATION_STEP) {
512                     delt = SECULAR_INTEGRATION_STEP;
513                 } else if (delt < -SECULAR_INTEGRATION_STEP) {
514                     delt = -SECULAR_INTEGRATION_STEP;
515                 } else {
516                     lastIntegrationStep = true;
517                 }
518 
519                 computeSecularDerivs();
520 
521                 final T xldot = xni.add(xfact);
522 
523                 T xlpow = t.getField().getOne();
524                 xli = xli.add(xldot.multiply(delt));
525                 xni = xni.add(derivs[0].multiply(delt));
526                 double delt_factor = delt;
527                 xlpow = xlpow.multiply(xldot);
528                 derivs[1] = derivs[1].multiply(xlpow);
529                 delt_factor *= delt / 2;
530                 xli = xli.add(derivs[0].multiply(delt_factor));
531                 xni = xni.add(derivs[1].multiply(delt_factor));
532                 atime = atime.add(delt);
533             }
534             xn = xni;
535             final T temp = xnode.negate().add(thgr).add(t.multiply(TLEConstants.THDT));
536             xll = xli.add(temp).add(synchronous ? omgadf.negate() : temp);
537         }
538     }
539 
540     /** Computes periodic terms from current coordinates and epoch.
541      * @param t offset from initial epoch (min)
542      */
543     protected void deepPeriodicEffects(final T t)  {
544 
545         // If the time didn't change by more than 30 minutes,
546         // there's no good reason to recompute the perturbations;
547         // they don't change enough over so short a time span.
548         // However,  the Dundee code _always_ recomputes,  so if
549         // we're attempting to replicate its results,  we've gotta
550         // recompute everything,  too.
551         if (FastMath.abs(savtsn.subtract(t).getReal()) >= 30.0 || isDundeeCompliant)  {
552 
553             savtsn = t;
554 
555             // Update solar perturbations for time T
556             T zm = t.multiply(TLEConstants.ZNS).add(zmos);
557             T zf = zm.add(FastMath.sin(zm).multiply(2 * TLEConstants.ZES));
558             FieldSinCos<T> sczf = FastMath.sinCos(zf);
559             T sinzf = sczf.sin();
560             T f2 = sinzf.multiply(sinzf).multiply(0.5).subtract(0.25);
561             T f3 = sinzf.multiply(sczf.cos()).multiply(-0.5);
562             final T ses = se2.multiply(f2).add(se3.multiply(f3));
563             final T sis = si2.multiply(f2).add(si3.multiply(f3));
564             final T sls = sl2.multiply(f2).add(sl3.multiply(f3)).add(sl4.multiply(sinzf));
565             final T sghs = sgh2.multiply(f2).add(sgh3.multiply(f3)).add(sgh4.multiply(sinzf));
566             final T shs = sh2.multiply(f2).add(sh3.multiply(f3));
567 
568             // Update lunar perturbations for time T
569             zm = t.multiply(TLEConstants.ZNL).add(zmol);
570             zf = zm.add(FastMath.sin(zm).multiply(2 * TLEConstants.ZEL));
571             sczf = FastMath.sinCos(zf);
572             sinzf = sczf.sin();
573             f2 =  sinzf.multiply(sinzf).multiply(0.5).subtract(0.25);
574             f3 = sinzf.multiply(sczf.cos()).multiply(-0.5);
575             final T sel = ee2.multiply(f2).add(e3.multiply(f3));
576             final T sil = xi2.multiply(f2).add(xi3.multiply(f3));
577             final T sll = xl2.multiply(f2).add(xl3.multiply(f3)).add(xl4.multiply(sinzf));
578             final T sghl = xgh2.multiply(f2).add(xgh3.multiply(f3)).add(xgh4.multiply(sinzf));
579             final T sh1 = xh2.multiply(f2).add(xh3.multiply(f3));
580 
581             // Sum the solar and lunar contributions
582             pe   = ses.add(sel);
583             pinc = sis.add(sil);
584             pl   = sls.add(sll);
585             pgh  = sghs.add(sghl);
586             ph   = shs.add(sh1);
587         }
588 
589         xinc = xinc.add(pinc);
590 
591         final FieldSinCos<T> scis = FastMath.sinCos(xinc);
592         final T sinis = scis.sin();
593         final T cosis = scis.cos();
594 
595         /* Add solar/lunar perturbation correction to eccentricity: */
596         em     = em.add(pe);
597         xll    = xll.add(pl);
598         omgadf = omgadf.add(pgh);
599         xinc   = MathUtils.normalizeAngle(xinc, t.getField().getZero());
600 
601         if (FastMath.abs(xinc).getReal() >= 0.2) {
602             // Apply periodics directly
603             final T temp_val = ph.divide(sinis);
604             omgadf = omgadf.subtract(cosis.multiply(temp_val));
605             xnode  = xnode.add(temp_val);
606         } else {
607             // Apply periodics with Lyddane modification
608             final FieldSinCos<T> scok = FastMath.sinCos(xnode);
609             final T sinok = scok.sin();
610             final T cosok = scok.cos();
611             final T alfdp =  ph.multiply(cosok).add((pinc.multiply(cosis).add(sinis)).multiply(sinok));
612             final T betdp = ph.negate().multiply(sinok).add((pinc.multiply(cosis).add(sinis)).multiply(cosok));
613             final T delta_xnode = MathUtils.normalizeAngle(FastMath.atan2(alfdp, betdp).subtract(xnode), t.getField().getZero());
614             final T dls = xnode.negate().multiply(sinis).multiply(pinc);
615             omgadf = omgadf.add(dls.subtract(cosis.multiply(delta_xnode)));
616             xnode  = xnode.add(delta_xnode);
617         }
618     }
619 
620     /** Computes internal secular derivs. */
621     private void computeSecularDerivs() {
622 
623         final FieldSinCos<T> sc_li  = FastMath.sinCos(xli);
624         final T sin_li = sc_li.sin();
625         final T cos_li = sc_li.cos();
626         final T sin_2li = sin_li.multiply(cos_li).multiply(2.);
627         final T cos_2li = cos_li.multiply(cos_li).multiply(2.).subtract(1.);
628 
629         // Dot terms calculated :
630         if (synchronous)  {
631             final T sin_3li = sin_2li.multiply(cos_li).add(cos_2li.multiply(sin_li));
632             final T cos_3li = cos_2li.multiply(cos_li).subtract(sin_2li.multiply(sin_li));
633             final T term1a = del1.multiply(sin_li .multiply(TLEConstants.C_FASX2) .subtract(cos_li .multiply(TLEConstants.S_FASX2 )));
634             final T term2a = del2.multiply(sin_2li.multiply(TLEConstants.C_2FASX4).subtract(cos_2li.multiply(TLEConstants.S_2FASX4)));
635             final T term3a = del3.multiply(sin_3li.multiply(TLEConstants.C_3FASX6).subtract(cos_3li.multiply(TLEConstants.S_3FASX6)));
636             final T term1b = del1.multiply(cos_li .multiply(TLEConstants.C_FASX2)      .add(sin_li .multiply(TLEConstants.S_FASX2 )));
637             final T term2b = del2.multiply(cos_2li.multiply(TLEConstants.C_2FASX4)     .add(sin_2li.multiply(TLEConstants.S_2FASX4))).multiply(2.0);
638             final T term3b = del3.multiply(cos_3li.multiply(TLEConstants.C_3FASX6)     .add(sin_3li.multiply(TLEConstants.S_3FASX6))).multiply(3.0);
639             derivs[0] = term1a.add(term2a).add(term3a);
640             derivs[1] = term1b.add(term2b).add(term3b);
641         } else {
642             // orbit is a 12-hour resonant one
643             final T xomi = omegaq.add(omgdot.multiply(atime));
644             final FieldSinCos<T> sc_omi  = FastMath.sinCos(xomi);
645             final T sin_omi = sc_omi.sin();
646             final T cos_omi = sc_omi.cos();
647             final T sin_li_m_omi = sin_li.multiply(cos_omi).subtract(sin_omi.multiply(cos_li));
648             final T sin_li_p_omi = sin_li.multiply(cos_omi).add(     sin_omi.multiply(cos_li));
649             final T cos_li_m_omi = cos_li.multiply(cos_omi).add(     sin_omi.multiply(sin_li));
650             final T cos_li_p_omi = cos_li.multiply(cos_omi).subtract(sin_omi.multiply(sin_li));
651             final T sin_2omi = sin_omi.multiply(cos_omi).multiply(2.0);
652             final T cos_2omi = cos_omi.multiply(cos_omi).multiply(2.0).subtract(1.0);
653             final T sin_2li_m_omi  = sin_2li.multiply(cos_omi ).subtract(sin_omi .multiply(cos_2li));
654             final T sin_2li_p_omi  = sin_2li.multiply(cos_omi ).add(     sin_omi .multiply(cos_2li));
655             final T cos_2li_m_omi  = cos_2li.multiply(cos_omi ).add(     sin_omi .multiply(sin_2li));
656             final T cos_2li_p_omi  = cos_2li.multiply(cos_omi ).subtract(sin_omi .multiply(sin_2li));
657             final T sin_2li_p_2omi = sin_2li.multiply(cos_2omi).add(     sin_2omi.multiply(cos_2li));
658             final T cos_2li_p_2omi = cos_2li.multiply(cos_2omi).subtract(sin_2omi.multiply(sin_2li));
659             final T sin_2omi_p_li  = sin_li .multiply(cos_2omi).add(     sin_2omi.multiply(cos_li ));
660             final T cos_2omi_p_li  = cos_li .multiply(cos_2omi).subtract(sin_2omi.multiply(sin_li ));
661             final T term1a = d2201.multiply(sin_2omi_p_li .multiply(TLEConstants.C_G22).subtract(cos_2omi_p_li .multiply(TLEConstants.S_G22))) .add(
662                              d2211.multiply(sin_li        .multiply(TLEConstants.C_G22).subtract(cos_li        .multiply(TLEConstants.S_G22)))).add(
663                              d3210.multiply(sin_li_p_omi  .multiply(TLEConstants.C_G32).subtract(cos_li_p_omi  .multiply(TLEConstants.S_G32)))).add(
664                              d3222.multiply(sin_li_m_omi  .multiply(TLEConstants.C_G32).subtract(cos_li_m_omi  .multiply(TLEConstants.S_G32)))).add(
665                              d5220.multiply(sin_li_p_omi  .multiply(TLEConstants.C_G52).subtract(cos_li_p_omi  .multiply(TLEConstants.S_G52)))).add(
666                              d5232.multiply(sin_li_m_omi  .multiply(TLEConstants.C_G52).subtract(cos_li_m_omi  .multiply(TLEConstants.S_G52))));
667             final T term2a = d4410.multiply(sin_2li_p_2omi.multiply(TLEConstants.C_G44).subtract(cos_2li_p_2omi.multiply(TLEConstants.S_G44))) .add(
668                              d4422.multiply(sin_2li       .multiply(TLEConstants.C_G44).subtract(cos_2li       .multiply(TLEConstants.S_G44)))).add(
669                              d5421.multiply(sin_2li_p_omi .multiply(TLEConstants.C_G54).subtract(cos_2li_p_omi .multiply(TLEConstants.S_G54)))).add(
670                              d5433.multiply(sin_2li_m_omi .multiply(TLEConstants.C_G54).subtract(cos_2li_m_omi .multiply(TLEConstants.S_G54))));
671             final T term1b = d2201.multiply(cos_2omi_p_li .multiply(TLEConstants.C_G22)     .add(sin_2omi_p_li .multiply(TLEConstants.S_G22))) .add(
672                              d2211.multiply(cos_li        .multiply(TLEConstants.C_G22)     .add(sin_li        .multiply(TLEConstants.S_G22)))).add(
673                              d3210.multiply(cos_li_p_omi  .multiply(TLEConstants.C_G32)     .add(sin_li_p_omi  .multiply(TLEConstants.S_G32)))).add(
674                              d3222.multiply(cos_li_m_omi  .multiply(TLEConstants.C_G32)     .add(sin_li_m_omi  .multiply(TLEConstants.S_G32)))).add(
675                              d5220.multiply(cos_li_p_omi  .multiply(TLEConstants.C_G52)     .add(sin_li_p_omi  .multiply(TLEConstants.S_G52)))).add(
676                              d5232.multiply(cos_li_m_omi  .multiply(TLEConstants.C_G52)     .add(sin_li_m_omi  .multiply(TLEConstants.S_G52))));
677             final T term2b = d4410.multiply(cos_2li_p_2omi.multiply(TLEConstants.C_G44)     .add(sin_2li_p_2omi.multiply(TLEConstants.S_G44))) .add(
678                              d4422.multiply(cos_2li       .multiply(TLEConstants.C_G44)     .add(sin_2li       .multiply(TLEConstants.S_G44)))).add(
679                              d5421.multiply(cos_2li_p_omi .multiply(TLEConstants.C_G54)     .add(sin_2li_p_omi .multiply(TLEConstants.S_G54)))).add(
680                              d5433.multiply(cos_2li_m_omi .multiply(TLEConstants.C_G54)     .add(sin_2li_m_omi .multiply(TLEConstants.S_G54)))).multiply(2.0);
681 
682             derivs[0] = term1a.add(term2a);
683             derivs[1] = term1b.add(term2b);
684 
685         }
686     }
687 
688 }