1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.forces;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
21  import org.hipparchus.geometry.euclidean.threed.Vector3D;
22  import org.hipparchus.util.FastMath;
23  import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
24  import org.orekit.frames.FieldStaticTransform;
25  import org.orekit.frames.Frame;
26  import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
27  
28  /**
29   * This class is a container for the common parameters used in {@link DSSTTesseral} and {@link DSSTZonal}.
30   * <p>
31   * It performs parameters initialization at each integration step for the Tesseral and Zonal contribution
32   * to the central body gravitational perturbation.
33   * </p>
34   * @author Bryan Cazabonne
35   * @author Maxime Journot
36   * @since 12.2
37   */
38  public class FieldDSSTGravityContext<T extends CalculusFieldElement<T>> extends FieldForceModelContext<T> {
39  
40      /** A = sqrt(μ * a). */
41      private final T A;
42  
43      /** &Chi; = 1 / sqrt(1 - e²) = 1 / B. */
44      private final T chi;
45  
46      /** &Chi;². */
47      private final T chi2;
48  
49      // Common factors from equinoctial coefficients
50      /** 2 * a / A . */
51      private final T ax2oA;
52  
53      /** 1 / (A * B) . */
54      private final T ooAB;
55  
56      /** B / A . */
57      private final T BoA;
58  
59      /** B / (A * (1 + B)) . */
60      private final T BoABpo;
61  
62      /** C / (2 * A * B) . */
63      private final T Co2AB;
64  
65      /** μ / a . */
66      private final T muoa;
67  
68      /** R / a . */
69      private final T roa;
70  
71      /** Keplerian mean motion. */
72      private final T n;
73  
74      /** Direction cosine α. */
75      private final T alpha;
76  
77      /** Direction cosine β. */
78      private final T beta;
79  
80      /** Direction cosine γ. */
81      private final T gamma;
82  
83      /** Transform from body-fixed frame to inertial frame. */
84      private final FieldStaticTransform<T> bodyFixedToInertialTransform;
85  
86      /**
87       * Constructor.
88       *
89       * @param auxiliaryElements auxiliary elements related to the current orbit
90       * @param centralBodyFixedFrame  rotating body frame
91       * @param provider   provider for spherical harmonics
92       * @param parameters values of the force model parameters
93       */
94      FieldDSSTGravityContext(final FieldAuxiliaryElements<T> auxiliaryElements,
95                              final Frame centralBodyFixedFrame,
96                              final UnnormalizedSphericalHarmonicsProvider provider,
97                              final T[] parameters) {
98  
99          super(auxiliaryElements);
100 
101         // µ
102         final T mu = parameters[0];
103 
104         // Semi-major axis
105         final T a = auxiliaryElements.getSma();
106 
107         // Keplerian Mean Motion
108         final T absA = FastMath.abs(a);
109         this.n = FastMath.sqrt(mu.divide(absA)).divide(absA);
110 
111         // A = sqrt(µ * |a|)
112         this.A = FastMath.sqrt(mu.multiply(absA));
113 
114         // &Chi; = 1 / B
115         final T B = auxiliaryElements.getB();
116         this.chi = auxiliaryElements.getB().reciprocal();
117         this.chi2 = chi.multiply(chi);
118 
119         // Common factors from equinoctial coefficients
120         // 2 * a / A
121         this.ax2oA = a.divide(A).multiply(2.);
122         // B / A
123         this.BoA = B.divide(A);;
124         // 1 / AB
125         this.ooAB = A.multiply(B).reciprocal();;
126         // C / 2AB
127         this.Co2AB =  auxiliaryElements.getC().multiply(ooAB).divide(2.);;
128         // B / (A * (1 + B))
129         this.BoABpo = BoA.divide(B.add(1.));
130         // &mu / a
131         this.muoa = mu.divide(a);
132         // R / a
133         this.roa = a.divide(provider.getAe()).reciprocal();
134 
135 
136         // If (centralBodyFrame == null), then centralBodyFrame = orbit frame (see DSSTZonal constructors for more on this).
137         final Frame internalCentralBodyFrame = centralBodyFixedFrame == null ? auxiliaryElements.getFrame() : centralBodyFixedFrame;
138 
139         // Transform from body-fixed frame (typically ITRF) to inertial frame
140         bodyFixedToInertialTransform = internalCentralBodyFrame.
141                         getStaticTransformTo(auxiliaryElements.getFrame(), auxiliaryElements.getDate());
142 
143         final FieldVector3D<T> zB = bodyFixedToInertialTransform.transformVector(Vector3D.PLUS_K);
144 
145         // Direction cosines for central body [Eq. 2.1.9-(1)]
146         alpha = FieldVector3D.dotProduct(zB, auxiliaryElements.getVectorF());
147         beta  = FieldVector3D.dotProduct(zB, auxiliaryElements.getVectorG());
148         gamma = FieldVector3D.dotProduct(zB, auxiliaryElements.getVectorW());
149     }
150 
151     /** A = sqrt(μ * a).
152      * @return A
153      */
154     public T getA() {
155         return A;
156     }
157 
158     /** Get &Chi; = 1 / sqrt(1 - e²) = 1 / B.
159      * @return chi
160      */
161     public T getChi() {
162         return chi;
163     }
164 
165     /** Get &Chi;².
166      * @return chi2
167      */
168     public T getChi2() {
169         return chi2;
170     }
171 
172     /** Getter for the ax2oA.
173      * @return the ax2oA
174      */
175     public T getAx2oA() {
176         return ax2oA;
177     }
178 
179     /** Get ooAB = 1 / (A * B).
180      * @return ooAB
181      */
182     public T getOoAB() {
183         return ooAB;
184     }
185 
186     /** Get B / A.
187      * @return BoA
188      */
189     public T getBoA() {
190         return BoA;
191     }
192 
193     /** Get BoABpo = B / A(1 + B).
194      * @return BoABpo
195      */
196     public T getBoABpo() {
197         return BoABpo;
198     }
199 
200     /** Get Co2AB = C / 2AB.
201      * @return Co2AB
202      */
203     public T getCo2AB() {
204         return Co2AB;
205     }
206 
207     /** Get muoa = μ / a.
208      * @return the muoa
209      */
210     public T getMuoa() {
211         return muoa;
212     }
213 
214     /** Get roa = R / a.
215      * @return roa
216      */
217     public T getRoa() {
218         return roa;
219     }
220 
221     /** Get the Keplerian mean motion.
222      * <p>The Keplerian mean motion is computed directly from semi major axis
223      * and central acceleration constant.</p>
224      * @return Keplerian mean motion in radians per second
225      */
226     public T getMeanMotion() {
227         return n;
228     }
229 
230     /** Get direction cosine α for central body.
231      * @return α
232      */
233     public T getAlpha() {
234         return alpha;
235     }
236 
237     /** Get direction cosine β for central body.
238      * @return β
239      */
240     public T getBeta() {
241         return beta;
242     }
243 
244     /** Get direction cosine γ for central body.
245      * @return the γ
246      */
247     public T getGamma() {
248         return gamma;
249     }
250 
251     /** Getter for the bodyFixedToInertialTransform.
252      * @return the bodyFixedToInertialTransform
253      */
254     public FieldStaticTransform<T> getBodyFixedToInertialTransform() {
255         return bodyFixedToInertialTransform;
256     }
257 }