1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.semianalytical.dsst.utilities;
18
19 import org.hipparchus.fraction.BigFraction;
20 import org.hipparchus.util.FastMath;
21
22 import java.util.Arrays;
23
24 /** Compute the Γ<sup>m</sup><sub>n,s</sub>(γ) function from equation 2.7.1-(13).
25 *
26 * @author Romain Di Costanzo
27 */
28 public class GammaMnsFunction {
29
30 /** Factorial ratios. */
31 private static double[] PRECOMPUTED_RATIOS;
32
33 /** Factorial ratios. */
34 private final double[] ratios;
35
36 /** Storage array. */
37 private final double[] values;
38
39 /** 1 + I * γ. */
40 private final double opIg;
41
42 /** I = +1 for a prograde orbit, -1 otherwise. */
43 private final int I;
44
45 /** Simple constructor.
46 * @param nMax max value for n
47 * @param gamma γ
48 * @param I retrograde factor
49 */
50 public GammaMnsFunction(final int nMax, final double gamma, final int I) {
51 final int size = (nMax + 1) * (nMax + 2) * (4 * nMax + 3) / 6;
52 this.values = new double[size];
53 this.ratios = getRatios(nMax, size);
54 Arrays.fill(values, Double.NaN);
55 this.opIg = 1. + I * gamma;
56 this.I = I;
57 }
58
59 /** Compute the array index.
60 * @param m m
61 * @param n n
62 * @param s s
63 * @return index for element m, n, s
64 */
65 private static int index(final int m, final int n, final int s) {
66 return n * (n + 1) * (4 * n - 1) / 6 + // index for 0, n, 0
67 m * (2 * n + 1) + // index for m, n, 0
68 s + n; // index for m, n, s
69 }
70
71 /** Get the ratios for the given size.
72 * @param nMax max value for n
73 * @param size ratio size array
74 * @return factorial ratios
75 */
76 private static double[] getRatios(final int nMax, final int size) {
77 synchronized (GammaMnsFunction.class) {
78 if (PRECOMPUTED_RATIOS == null || PRECOMPUTED_RATIOS.length < size) {
79 // we need to compute a larger reference array
80
81 final BigFraction[] bF = new BigFraction[size];
82 for (int n = 0; n <= nMax; ++n) {
83
84 // populate ratios for s = 0
85 bF[index(0, n, 0)] = BigFraction.ONE;
86 for (int m = 1; m <= n; ++m) {
87 bF[index(m, n, 0)] = bF[index(m - 1, n, 0)].multiply(n + m).divide(n - (m - 1));
88 }
89
90 // populate ratios for s != 0
91 for (int absS = 1; absS <= n; ++absS) {
92 for (int m = 0; m <= n; ++m) {
93 bF[index(m, n, +absS)] = bF[index(m, n, absS - 1)].divide(n + absS).multiply(n - (absS - 1));
94 bF[index(m, n, -absS)] = bF[index(m, n, absS)];
95 }
96 }
97
98 }
99
100 // convert to double
101 PRECOMPUTED_RATIOS = new double[size];
102 for (int i = 0; i < bF.length; ++i) {
103 PRECOMPUTED_RATIOS[i] = bF[i].doubleValue();
104 }
105
106 }
107 return PRECOMPUTED_RATIOS;
108 }
109 }
110
111 /** Get Γ function value.
112 * @param m m
113 * @param n n
114 * @param s s
115 * @return Γ<sup>m</sup><sub>n, s</sub>(γ)
116 */
117 public double getValue(final int m, final int n, final int s) {
118 final int i = index(m, n, s);
119 if (Double.isNaN(values[i])) {
120 if (s <= -m) {
121 values[i] = (((m - s) & 0x1) == 0 ? +1 : -1) * FastMath.scalb(FastMath.pow(opIg, -I * m), s);
122 } else if (s <= m) {
123 values[i] = (((m - s) & 0x1) == 0 ? +1 : -1) * FastMath.scalb(FastMath.pow(opIg, I * s), -m) * ratios[i];
124 } else {
125 values[i] = FastMath.scalb(FastMath.pow(opIg, I * m), -s);
126 }
127 }
128 return values[i];
129 }
130
131 /** Get Γ function derivative.
132 * @param m m
133 * @param n n
134 * @param s s
135 * @return dΓ<sup>m</sup><sub>n,s</sub>(γ)/dγ
136 */
137 public double getDerivative(final int m, final int n, final int s) {
138 if (s <= -m) {
139 return -m * I * getValue(m, n, s) / opIg;
140 } else if (s >= m) {
141 return m * I * getValue(m, n, s) / opIg;
142 } else {
143 return s * I * getValue(m, n, s) / opIg;
144 }
145 }
146
147 }