1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.utilities;
18  
19  import org.hipparchus.analysis.polynomials.PolynomialFunction;
20  import org.hipparchus.util.FastMath;
21  
22  import java.util.ArrayList;
23  import java.util.List;
24  import java.util.Map;
25  import java.util.SortedMap;
26  import java.util.TreeMap;
27  
28  /**
29   * Implementation of the Modified Newcomb Operators.
30   *
31   *  <p> From equations 2.7.3 - (12)(13) of the Danielson paper, those operators
32   *  are defined as:
33   *
34   *  <p>
35   *  4(ρ + σ)Y<sub>ρ,σ</sub><sup>n,s</sup> = <br>
36   *     2(2s - n)Y<sub>ρ-1,σ</sub><sup>n,s+1</sup> + (s - n)Y<sub>ρ-2,σ</sub><sup>n,s+2</sup> <br>
37   *   - 2(2s + n)Y<sub>ρ,σ-1</sub><sup>n,s-1</sup> - (s+n)Y<sub>ρ,σ-2</sub><sup>n,s-2</sup> <br>
38   *   + 2(2ρ + 2σ + 2 + 3n)Y<sub>ρ-1,σ-1</sub><sup>n,s</sup>
39   *
40   *  <p> Initialization is given by : Y<sub>0,0</sub><sup>n,s</sup> = 1
41   *
42   *  <p> Internally, the Modified Newcomb Operators are stored as an array of
43   *  {@link PolynomialFunction} :
44   *
45   *  <p> Y<sub>ρ,σ</sub><sup>n,s</sup> = P<sub>k0</sub> + P<sub>k1</sub>n + ... +
46   *  P<sub>kj</sub>n<sup>j</sup>
47   *
48   * <p> where the P<sub>kj</sub> are given by
49   *
50   * <p> P<sub>kj</sub> = ∑<sub>j=0;ρ</sub> a<sub>j</sub>s<sup>j</sup>
51   *
52   * @author Romain Di Costanzo
53   * @author Pascal Parraud
54   */
55  public class NewcombOperators {
56  
57      /** Storage map. */
58      private static final Map<NewKey, Double> MAP = new TreeMap<>((k1, k2) -> {
59          if (k1.n == k2.n) {
60              if (k1.s == k2.s) {
61                  if (k1.rho == k2.rho) {
62                      return Integer.compare(k1.sigma, k2.sigma);
63                  } else if (k1.rho < k2.rho) {
64                      return -1;
65                  } else {
66                      return 1;
67                  }
68              } else if (k1.s < k2.s) {
69                  return -1;
70              } else {
71                  return 1;
72              }
73          } else if (k1.n < k2.n) {
74              return -1;
75          }
76          return 1;
77      });
78  
79      /** Private constructor as class is a utility.
80       */
81      private NewcombOperators() {
82      }
83  
84      /** Get the Newcomb operator evaluated at n, s, ρ, σ.
85       * <p>
86       * This method is guaranteed to be thread-safe
87       * </p>
88       *  @param rho ρ index
89       *  @param sigma σ index
90       *  @param n n index
91       *  @param s s index
92       *  @return Y<sub>ρ,σ</sub><sup>n,s</sup>
93       */
94      public static double getValue(final int rho, final int sigma, final int n, final int s) {
95  
96          final NewKey key = new NewKey(n, s, rho, sigma);
97          synchronized (MAP) {
98              if (MAP.containsKey(key)) {
99                  return MAP.get(key);
100             }
101         }
102 
103         // Get the Newcomb polynomials for the given rho and sigma
104         final List<PolynomialFunction> polynomials = PolynomialsGenerator.getPolynomials(rho, sigma);
105 
106         // Compute the value from the list of polynomials for the given n and s
107         double nPower = 1.;
108         double value = 0.0;
109         for (final PolynomialFunction polynomial : polynomials) {
110             value += polynomial.value(s) * nPower;
111             nPower = n * nPower;
112         }
113         synchronized (MAP) {
114             MAP.put(key, value);
115         }
116 
117         return value;
118 
119     }
120 
121     /** Generator for Newcomb polynomials. */
122     private static class PolynomialsGenerator {
123 
124         /** Polynomials storage. */
125         private static final SortedMap<Couple, List<PolynomialFunction>> POLYNOMIALS =
126                 new TreeMap<>((c1, c2) -> {
127                     if (c1.rho == c2.rho) {
128                         if (c1.sigma < c2.sigma) {
129                             return -1;
130                         } else if (c1.sigma == c2.sigma) {
131                             return 0;
132                         }
133                     } else if (c1.rho < c2.rho) {
134                         return -1;
135                     }
136                     return 1;
137                 });
138 
139         /** Private constructor as class is a utility.
140          */
141         private PolynomialsGenerator() {
142         }
143 
144         /** Get the list of polynomials representing the Newcomb Operator for the (ρ,σ) couple.
145          * <p>
146          * This method is guaranteed to be thread-safe
147          * </p>
148          *  @param rho ρ value
149          *  @param sigma σ value
150          *  @return Polynomials representing the Newcomb Operator for the (ρ,σ) couple.
151          */
152         private static List<PolynomialFunction> getPolynomials(final int rho, final int sigma) {
153 
154             final Couple couple = new Couple(rho, sigma);
155 
156             synchronized (POLYNOMIALS) {
157 
158                 if (POLYNOMIALS.isEmpty()) {
159                     // Initialize lists
160                     final List<PolynomialFunction> l00 = new ArrayList<>();
161                     final List<PolynomialFunction> l01 = new ArrayList<>();
162                     final List<PolynomialFunction> l10 = new ArrayList<>();
163                     final List<PolynomialFunction> l11 = new ArrayList<>();
164 
165                     // Y(rho = 0, sigma = 0) = 1
166                     l00.add(new PolynomialFunction(new double[] {
167                         1.
168                     }));
169                     // Y(rho = 0, sigma = 1) =  -s - n/2
170                     l01.add(new PolynomialFunction(new double[] {
171                         0, -1.
172                     }));
173                     l01.add(new PolynomialFunction(new double[] {
174                         -0.5
175                     }));
176                     // Y(rho = 1, sigma = 0) =  s - n/2
177                     l10.add(new PolynomialFunction(new double[] {
178                         0, 1.
179                     }));
180                     l10.add(new PolynomialFunction(new double[] {
181                         -0.5
182                     }));
183                     // Y(rho = 1, sigma = 1) = 3/2 - s² + 5n/4 + n²/4
184                     l11.add(new PolynomialFunction(new double[] {
185                         1.5, 0., -1.
186                     }));
187                     l11.add(new PolynomialFunction(new double[] {
188                         1.25
189                     }));
190                     l11.add(new PolynomialFunction(new double[] {
191                         0.25
192                     }));
193 
194                     // Initialize polynomials
195                     POLYNOMIALS.put(new Couple(0, 0), l00);
196                     POLYNOMIALS.put(new Couple(0, 1), l01);
197                     POLYNOMIALS.put(new Couple(1, 0), l10);
198                     POLYNOMIALS.put(new Couple(1, 1), l11);
199 
200                 }
201 
202                 // If order hasn't been computed yet, update the Newcomb polynomials
203                 if (!POLYNOMIALS.containsKey(couple)) {
204                     PolynomialsGenerator.computeFor(rho, sigma);
205                 }
206 
207                 return POLYNOMIALS.get(couple);
208 
209             }
210         }
211 
212         /** Compute the Modified Newcomb Operators up to a given (ρ, σ) couple.
213          *  <p>
214          *  The recursive computation uses equation 2.7.3-(12) of the Danielson paper.
215          *  </p>
216          *  @param rho ρ value to reach
217          *  @param sigma σ value to reach
218          */
219         private static void computeFor(final int rho, final int sigma) {
220 
221             // Initialize result :
222             List<PolynomialFunction> result = new ArrayList<>();
223 
224             // Get the coefficient from the recurrence relation
225             final Map<Integer, List<PolynomialFunction>> map = generateRecurrenceCoefficients(rho, sigma);
226 
227             // Compute (s - n) * Y[rho - 2, sigma][n, s + 2]
228             if (rho >= 2) {
229                 final List<PolynomialFunction> poly = map.get(0);
230                 final List<PolynomialFunction> list = getPolynomials(rho - 2, sigma);
231                 result = multiplyPolynomialList(poly, shiftList(list, 2));
232             }
233 
234             // Compute 2(2rho + 2sigma + 2 + 3n) * Y[rho - 1, sigma - 1][n, s]
235             if (rho >= 1 && sigma >= 1) {
236                 final List<PolynomialFunction> poly = map.get(1);
237                 final List<PolynomialFunction> list = getPolynomials(rho - 1, sigma - 1);
238                 result = sumPolynomialList(result, multiplyPolynomialList(poly, list));
239             }
240 
241             // Compute 2(2s - n) * Y[rho - 1, sigma][n, s + 1]
242             if (rho >= 1) {
243                 final List<PolynomialFunction> poly = map.get(2);
244                 final List<PolynomialFunction> list = getPolynomials(rho - 1, sigma);
245                 result = sumPolynomialList(result, multiplyPolynomialList(poly, shiftList(list, 1)));
246             }
247 
248             // Compute -(s + n) * Y[rho, sigma - 2][n, s - 2]
249             if (sigma >= 2) {
250                 final List<PolynomialFunction> poly = map.get(3);
251                 final List<PolynomialFunction> list = getPolynomials(rho, sigma - 2);
252                 result = sumPolynomialList(result, multiplyPolynomialList(poly, shiftList(list, -2)));
253             }
254 
255             // Compute -2(2s + n) * Y[rho, sigma - 1][n, s - 1]
256             if (sigma >= 1) {
257                 final List<PolynomialFunction> poly = map.get(4);
258                 final List<PolynomialFunction> list = getPolynomials(rho, sigma - 1);
259                 result = sumPolynomialList(result, multiplyPolynomialList(poly, shiftList(list, -1)));
260             }
261 
262             // Save polynomials for current (rho, sigma) couple
263             final Couple couple = new Couple(rho, sigma);
264             POLYNOMIALS.put(couple, result);
265         }
266 
267         /** Multiply two lists of polynomials defined as the internal representation of the Newcomb Operator.
268          *  <p>
269          *  Let's call R<sub>s</sub>(n) the result returned by the method :
270          *  <pre>
271          *  R<sub>s</sub>(n) = (P<sub>s₀</sub> + P<sub>s₁</sub>n + ... + P<sub>s<sub>j</sub></sub>n<sup>j</sup>) *(Q<sub>s₀</sub> + Q<sub>s₁</sub>n + ... + Q<sub>s<sub>k</sub></sub>n<sup>k</sup>)
272          *  </pre>
273          *
274          *  where the P<sub>s<sub>j</sub></sub> and Q<sub>s<sub>k</sub></sub> are polynomials in s,
275          *  s being the index of the Y<sub>ρ,σ</sub><sup>n,s</sup> function
276          *
277          *  @param poly1 first list of polynomials
278          *  @param poly2 second list of polynomials
279          *  @return R<sub>s</sub>(n) as a list of {@link PolynomialFunction}
280          */
281         private static List<PolynomialFunction> multiplyPolynomialList(final List<PolynomialFunction> poly1,
282                                                                        final List<PolynomialFunction> poly2) {
283             // Initialize the result list of polynomial function
284             final List<PolynomialFunction> result = new ArrayList<>();
285             initializeListOfPolynomials(poly1.size() + poly2.size() - 1, result);
286 
287             int i = 0;
288             // Iterate over first polynomial list
289             for (PolynomialFunction f1 : poly1) {
290                 // Iterate over second polynomial list
291                 for (int j = i; j < poly2.size() + i; j++) {
292                     final PolynomialFunction p2 = poly2.get(j - i);
293                     // Get previous polynomial for current 'n' order
294                     final PolynomialFunction previousP2 = result.get(j);
295                     // Replace the current order by summing the product of both of the polynomials
296                     result.set(j, previousP2.add(f1.multiply(p2)));
297                 }
298                 // shift polynomial order in 'n'
299                 i++;
300             }
301             return result;
302         }
303 
304         /** Sum two lists of {@link PolynomialFunction}.
305          *  @param poly1 first list
306          *  @param poly2 second list
307          *  @return the summed list
308          */
309         private static List<PolynomialFunction> sumPolynomialList(final List<PolynomialFunction> poly1,
310                                                                   final List<PolynomialFunction> poly2) {
311             // identify the lowest degree polynomial
312             final int lowLength  = FastMath.min(poly1.size(), poly2.size());
313             final int highLength = FastMath.max(poly1.size(), poly2.size());
314             // Initialize the result list of polynomial function
315             final List<PolynomialFunction> result = new ArrayList<>();
316             initializeListOfPolynomials(highLength, result);
317 
318             for (int i = 0; i < lowLength; i++) {
319                 // Add polynomials by increasing order of 'n'
320                 result.set(i, poly1.get(i).add(poly2.get(i)));
321             }
322             // Complete the list if lists are of different size:
323             for (int i = lowLength; i < highLength; i++) {
324                 if (poly1.size() < poly2.size()) {
325                     result.set(i, poly2.get(i));
326                 } else {
327                     result.set(i, poly1.get(i));
328                 }
329             }
330             return result;
331         }
332 
333         /** Initialize an empty list of polynomials.
334          *  @param i order
335          *  @param result list into which polynomials should be added
336          */
337         private static void initializeListOfPolynomials(final int i,
338                                                         final List<PolynomialFunction> result) {
339             for (int k = 0; k < i; k++) {
340                 result.add(new PolynomialFunction(new double[] {0.}));
341             }
342         }
343 
344         /** Shift a list of {@link PolynomialFunction}.
345          *
346          *  @param polynomialList list of {@link PolynomialFunction}
347          *  @param shift shift value
348          *  @return new list of shifted {@link PolynomialFunction}
349          */
350         private static List<PolynomialFunction> shiftList(final List<PolynomialFunction> polynomialList,
351                                                           final int shift) {
352             final List<PolynomialFunction> shiftedList = new ArrayList<>();
353             for (PolynomialFunction function : polynomialList) {
354                 shiftedList.add(new PolynomialFunction(shift(function.getCoefficients(), shift)));
355             }
356             return shiftedList;
357         }
358 
359         /**
360          * Compute the coefficients of the polynomial \(P_s(x)\)
361          * whose values at point {@code x} will be the same as the those from the
362          * original polynomial \(P(x)\) when computed at {@code x + shift}.
363          * <p>
364          * More precisely, let \(\Delta = \) {@code shift} and let
365          * \(P_s(x) = P(x + \Delta)\).  The returned array
366          * consists of the coefficients of \(P_s\).  So if \(a_0, ..., a_{n-1}\)
367          * are the coefficients of \(P\), then the returned array
368          * \(b_0, ..., b_{n-1}\) satisfies the identity
369          * \(\sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} a_i (x + \Delta)^i\) for all \(x\).
370          * </p>
371          * <p>
372          * This method is a modified version of the method with the same name
373          * in Hipparchus {@code PolynomialsUtils} class, simply changing
374          * computation of binomial coefficients so degrees higher than 66 can be used.
375          * </p>
376          *
377          * @param coefficients Coefficients of the original polynomial.
378          * @param shift Shift value.
379          * @return the coefficients \(b_i\) of the shifted
380          * polynomial.
381          */
382         public static double[] shift(final double[] coefficients,
383                                      final double shift) {
384             final int dp1 = coefficients.length;
385             final double[] newCoefficients = new double[dp1];
386 
387             // Pascal triangle.
388             final double[][] coeff = new double[dp1][dp1];
389             coeff[0][0] = 1;
390             for (int i = 1; i < dp1; i++) {
391                 coeff[i][0] = 1;
392                 for (int j = 1; j < i; j++) {
393                     coeff[i][j] = coeff[i - 1][j - 1] + coeff[i - 1][j];
394                 }
395                 coeff[i][i] = 1;
396             }
397 
398             // First polynomial coefficient.
399             double shiftI = 1;
400             for (double coefficient : coefficients) {
401                 newCoefficients[0] += coefficient * shiftI;
402                 shiftI *= shift;
403             }
404 
405             // Superior order.
406             final int d = dp1 - 1;
407             for (int i = 0; i < d; i++) {
408                 double shiftJmI = 1;
409                 for (int j = i; j < d; j++) {
410                     newCoefficients[i + 1] += coeff[j + 1][j - i] * coefficients[j + 1] * shiftJmI;
411                     shiftJmI *= shift;
412                 }
413             }
414 
415             return newCoefficients;
416         }
417 
418         /** Generate recurrence coefficients.
419          *
420          *  @param rho ρ value
421          *  @param sigma σ value
422          *  @return recurrence coefficients
423          */
424         private static Map<Integer, List<PolynomialFunction>> generateRecurrenceCoefficients(final int rho, final int sigma) {
425             final double den   = 1. / (4. * (rho + sigma));
426             final double denx2 = 2. * den;
427             final double denx4 = 4. * den;
428             // Initialization :
429             final Map<Integer, List<PolynomialFunction>> list = new TreeMap<>();
430             final List<PolynomialFunction> poly0 = new ArrayList<>();
431             final List<PolynomialFunction> poly1 = new ArrayList<>();
432             final List<PolynomialFunction> poly2 = new ArrayList<>();
433             final List<PolynomialFunction> poly3 = new ArrayList<>();
434             final List<PolynomialFunction> poly4 = new ArrayList<>();
435             // (s - n)
436             poly0.add(new PolynomialFunction(new double[] {0., den}));
437             poly0.add(new PolynomialFunction(new double[] {-den}));
438             // 2(2 * rho + 2 * sigma + 2 + 3*n)
439             poly1.add(new PolynomialFunction(new double[] {1. + denx4}));
440             poly1.add(new PolynomialFunction(new double[] {denx2 + denx4}));
441             // 2(2s - n)
442             poly2.add(new PolynomialFunction(new double[] {0., denx4}));
443             poly2.add(new PolynomialFunction(new double[] {-denx2}));
444             // - (s + n)
445             poly3.add(new PolynomialFunction(new double[] {0., -den}));
446             poly3.add(new PolynomialFunction(new double[] {-den}));
447             // - 2(2s + n)
448             poly4.add(new PolynomialFunction(new double[] {0., -denx4}));
449             poly4.add(new PolynomialFunction(new double[] {-denx2}));
450 
451             // Fill the map :
452             list.put(0, poly0);
453             list.put(1, poly1);
454             list.put(2, poly2);
455             list.put(3, poly3);
456             list.put(4, poly4);
457             return list;
458         }
459 
460     }
461 
462     /** Private class to define a couple of value. */
463     private static class Couple {
464 
465         /** first couple value. */
466         private final int rho;
467 
468         /** second couple value. */
469         private final int sigma;
470 
471         /** Constructor.
472          * @param rho first couple value
473          * @param sigma second couple value
474          */
475         private Couple(final int rho, final int sigma) {
476             this.rho = rho;
477             this.sigma = sigma;
478         }
479 
480     }
481 
482     /** Newcomb operator's key. */
483     private static class NewKey {
484 
485         /** n value. */
486         private final int n;
487 
488         /** s value. */
489         private final int s;
490 
491         /** ρ value. */
492         private final int rho;
493 
494         /** σ value. */
495         private final int sigma;
496 
497         /** Simpleconstructor.
498          * @param n n
499          * @param s s
500          * @param rho ρ
501          * @param sigma σ
502          */
503         NewKey(final int n, final int s, final int rho, final int sigma) {
504             this.n = n;
505             this.s = s;
506             this.rho = rho;
507             this.sigma = sigma;
508         }
509 
510     }
511 
512 }