1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.semianalytical.dsst.utilities.hansen;
18
19 import org.hipparchus.analysis.polynomials.PolynomialFunction;
20 import org.hipparchus.util.FastMath;
21
22 /**
23 * Hansen coefficients K(t,n,s) for t=0 and n > 0.
24 * <p>
25 * Implements Collins 4-254 or Danielson 2.7.3-(7) for Hansen Coefficients and
26 * Danielson 3.2-(3) for derivatives. The recursions are transformed into
27 * composition of linear transformations to obtain the associated polynomials
28 * for coefficients and their derivatives - see Petre's paper
29 *
30 * @author Petre Bazavan
31 * @author Lucian Barbulescu
32 */
33 public class HansenThirdBodyLinear {
34
35 /** The number of coefficients that will be computed with a set of roots. */
36 private static final int SLICE = 10;
37
38 /**
39 * The first vector of polynomials associated to Hansen coefficients and
40 * derivatives.
41 */
42 private final PolynomialFunction[][] mpvec;
43
44 /** The second vector of polynomials associated only to derivatives. */
45 private final PolynomialFunction[][] mpvecDeriv;
46
47 /** The Hansen coefficients used as roots. */
48 private final double[][] hansenRoot;
49
50 /** The derivatives of the Hansen coefficients used as roots. */
51 private final double[][] hansenDerivRoot;
52
53 /** The number of slices needed to compute the coefficients. */
54 private final int numSlices;
55
56 /** The s index. */
57 private final int s;
58
59 /** (-1)<sup>s</sup> * (2*s + 1)!! / (s+1)! */
60 private double twosp1dfosp1f;
61
62 /** (-1)<sup>s</sup> * (2*s + 1)!! / (s+2)! */
63 private final double twosp1dfosp2f;
64
65 /** (-1)<sup>s</sup> * 2 * (2*s + 1)!! / (s+2)! */
66 private final double two2sp1dfosp2f;
67
68 /** (2*s + 3). */
69 private final double twosp3;
70
71 /**
72 * Constructor.
73 *
74 * @param nMax the maximum value of n
75 * @param s the value of s
76 */
77 public HansenThirdBodyLinear(final int nMax, final int s) {
78
79 // initialise fields
80 this.s = s;
81
82 //Compute the fields that will be used to determine the initial values for the coefficients
83 this.twosp1dfosp1f = (s % 2 == 0) ? 1.0 : -1.0;
84 for (int i = s; i >= 1; i--) {
85 this.twosp1dfosp1f *= (2.0 * i + 1.0) / (i + 1.0);
86 }
87
88 this.twosp1dfosp2f = this.twosp1dfosp1f / (s + 2.);
89 this.twosp3 = 2 * s + 3;
90 this.two2sp1dfosp2f = 2 * this.twosp1dfosp2f;
91
92 // initialization of structures for stored data
93 mpvec = new PolynomialFunction[nMax + 1][];
94 mpvecDeriv = new PolynomialFunction[nMax + 1][];
95
96 this.numSlices = FastMath.max(1, (nMax - s + SLICE - 2) / SLICE);
97 hansenRoot = new double[numSlices][2];
98 hansenDerivRoot = new double[numSlices][2];
99
100 // Prepare the database of the associated polynomials
101 HansenUtilities.generateThirdBodyPolynomials(s, nMax, SLICE, s,
102 mpvec, mpvecDeriv);
103
104 }
105
106 /**
107 * Compute the initial values (see Collins, 4-255, 4-256 and 4.259)
108 * <p>
109 * K₀<sup>s, s</sup> = (-1)<sup>s</sup> * ( (2*s+1)!! / (s+1)! )
110 * </p>
111 * <p>
112 * K₀<sup>s+1, s</sup> = (-1)<sup>s</sup> * ( (2*s+1)!! / (s+2)!
113 * ) * (2*s+3 - χ<sup>-2</sup>)
114 * </p>
115 * <p>
116 * dK₀<sup>s+1, s</sup> / dχ = = (-1)<sup>s</sup> * 2 * (
117 * (2*s+1)!! / (s+2)! ) * χ<sup>-3</sup>
118 * </p>
119 * @param chitm1 sqrt(1 - e²)
120 * @param chitm2 sqrt(1 - e²)²
121 * @param chitm3 sqrt(1 - e²)³
122 */
123 public void computeInitValues(final double chitm1, final double chitm2, final double chitm3) {
124 this.hansenRoot[0][0] = this.twosp1dfosp1f;
125 this.hansenRoot[0][1] = this.twosp1dfosp2f * (this.twosp3 - chitm2);
126 this.hansenDerivRoot[0][0] = 0;
127 this.hansenDerivRoot[0][1] = this.two2sp1dfosp2f * chitm3;
128
129 for (int i = 1; i < numSlices; i++) {
130 for (int j = 0; j < 2; j++) {
131 // Get the required polynomials
132 final PolynomialFunction[] mv = mpvec[s + (i * SLICE) + j];
133 final PolynomialFunction[] sv = mpvecDeriv[s + (i * SLICE) + j];
134
135 //Compute the root derivatives
136 hansenDerivRoot[i][j] = mv[1].value(chitm1) * hansenDerivRoot[i - 1][1] +
137 mv[0].value(chitm1) * hansenDerivRoot[i - 1][0] +
138 sv[1].value(chitm1) * hansenRoot[i - 1][1] +
139 sv[0].value(chitm1) * hansenRoot[i - 1][0];
140
141 //Compute the root Hansen coefficients
142 hansenRoot[i][j] = mv[1].value(chitm1) * hansenRoot[i - 1][1] +
143 mv[0].value(chitm1) * hansenRoot[i - 1][0];
144 }
145 }
146 }
147
148 /**
149 * Compute the value of the Hansen coefficient K₀<sup>n, s</sup>.
150 *
151 * @param n n value
152 * @param chitm1 χ<sup>-1</sup>
153 * @return the coefficient K₀<sup>n, s</sup>
154 */
155 public double getValue(final int n, final double chitm1) {
156 //Compute the potential slice
157 int sliceNo = (n - s) / SLICE;
158 if (sliceNo < numSlices) {
159 //Compute the index within the slice
160 final int indexInSlice = (n - s) % SLICE;
161
162 //Check if a root must be returned
163 if (indexInSlice <= 1) {
164 return hansenRoot[sliceNo][indexInSlice];
165 }
166 } else {
167 //the value was a potential root for a slice, but that slice was not required
168 //Decrease the slice number
169 sliceNo--;
170 }
171
172 // Danielson 2.7.3-(6c)/Collins 4-242 and Petre's paper
173 final PolynomialFunction[] v = mpvec[n];
174 double ret = v[1].value(chitm1) * hansenRoot[sliceNo][1];
175 if (hansenRoot[sliceNo][0] != 0) {
176 ret += v[0].value(chitm1) * hansenRoot[sliceNo][0];
177 }
178
179 return ret;
180
181 }
182
183 /**
184 * Compute the value of the Hansen coefficient dK₀<sup>n, s</sup> / dΧ.
185 *
186 * @param n n value
187 * @param chitm1 χ<sup>-1</sup>
188 * @return the coefficient dK₀<sup>n, s</sup> / dΧ
189 */
190 public double getDerivative(final int n, final double chitm1) {
191 //Compute the potential slice
192 int sliceNo = (n - s) / SLICE;
193 if (sliceNo < numSlices) {
194 //Compute the index within the slice
195 final int indexInSlice = (n - s) % SLICE;
196
197 //Check if a root must be returned
198 if (indexInSlice <= 1) {
199 return hansenDerivRoot[sliceNo][indexInSlice];
200 }
201 } else {
202 //the value was a potential root for a slice, but that slice was not required
203 //Decrease the slice number
204 sliceNo--;
205 }
206
207 final PolynomialFunction[] v = mpvec[n];
208 double ret = v[1].value(chitm1) * hansenDerivRoot[sliceNo][1];
209 if (hansenDerivRoot[sliceNo][0] != 0) {
210 ret += v[0].value(chitm1) * hansenDerivRoot[sliceNo][0];
211 }
212
213 // Danielson 2.7.3-(7c)/Collins 4-254 and Petre's paper
214 final PolynomialFunction[] v1 = mpvecDeriv[n];
215 ret += v1[1].value(chitm1) * hansenRoot[sliceNo][1];
216 if (hansenRoot[sliceNo][0] != 0) {
217 ret += v1[0].value(chitm1) * hansenRoot[sliceNo][0];
218 }
219 return ret;
220
221 }
222
223 }