1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.utils;
18
19 import org.hipparchus.util.CombinatoricsUtils;
20 import org.hipparchus.util.FastMath;
21
22 /**
23 * Computes the P<sub>nm</sub>(t) coefficients.
24 * <p>
25 * The computation of the Legendre polynomials is performed following:
26 * Heiskanen and Moritz, Physical Geodesy, 1967, eq. 1-62
27 * </p>
28 * @since 11.0
29 * @author Bryan Cazabonne
30 */
31 public class LegendrePolynomials {
32
33 /** Array for the Legendre polynomials. */
34 private double[][] pCoef;
35
36 /** Create Legendre polynomials for the given degree and order.
37 * @param degree degree of the spherical harmonics
38 * @param order order of the spherical harmonics
39 * @param t argument for polynomials calculation
40 */
41 public LegendrePolynomials(final int degree, final int order,
42 final double t) {
43
44 // Initialize array
45 this.pCoef = new double[degree + 1][order + 1];
46
47 final double t2 = t * t;
48
49 for (int n = 0; n <= degree; n++) {
50
51 // m shall be <= n (Heiskanen and Moritz, 1967, pp 21)
52 for (int m = 0; m <= FastMath.min(n, order); m++) {
53
54 // r = int((n - m) / 2)
55 final int r = (int) (n - m) / 2;
56 double sum = 0.;
57 for (int k = 0; k <= r; k++) {
58 final double term = FastMath.pow(-1.0, k) * CombinatoricsUtils.factorialDouble(2 * n - 2 * k) /
59 (CombinatoricsUtils.factorialDouble(k) * CombinatoricsUtils.factorialDouble(n - k) *
60 CombinatoricsUtils.factorialDouble(n - m - 2 * k)) *
61 FastMath.pow(t, n - m - 2 * k);
62 sum = sum + term;
63 }
64
65 pCoef[n][m] = FastMath.pow(2, -n) * FastMath.pow(1.0 - t2, 0.5 * m) * sum;
66
67 }
68
69 }
70
71 }
72
73 /** Return the coefficient P<sub>nm</sub>.
74 * @param n index
75 * @param m index
76 * @return The coefficient P<sub>nm</sub>
77 */
78 public double getPnm(final int n, final int m) {
79 return pCoef[n][m];
80 }
81
82 }