1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.estimation.measurements.modifiers;
18  
19  import org.hipparchus.geometry.euclidean.threed.Vector3D;
20  import org.junit.jupiter.api.Assertions;
21  import org.junit.jupiter.api.BeforeEach;
22  import org.junit.jupiter.api.Test;
23  import org.orekit.Utils;
24  import org.orekit.estimation.measurements.EstimatedMeasurement;
25  import org.orekit.estimation.measurements.EstimatedMeasurementBase;
26  import org.orekit.estimation.measurements.EstimationModifier;
27  import org.orekit.estimation.measurements.ObservableSatellite;
28  import org.orekit.estimation.measurements.gnss.AmbiguityCache;
29  import org.orekit.estimation.measurements.gnss.InterSatellitesPhase;
30  import org.orekit.gnss.PredefinedGnssSignal;
31  import org.orekit.propagation.SpacecraftState;
32  import org.orekit.propagation.analytical.tle.TLE;
33  import org.orekit.propagation.analytical.tle.TLEPropagator;
34  import org.orekit.time.AbsoluteDate;
35  import org.orekit.time.TimeScalesFactory;
36  import org.orekit.utils.Constants;
37  
38  
39  /**
40   * Check against prediction in
41   * "Springer Handbook oƒ Global Navigation Satellite Systems, Teunissen, Montenbruck".
42   * <p>
43   * An approximate value is given in terms of delay for Galileo satellites.
44   * As these satellites are close to GPS satellites, we consider the delays to be
45   * of the same order, namely around 62ps.
46   * </p>
47   * <p>
48   * The values produced by the modifiers are translated in terms of delay and checked against
49   * the approximate value.
50   * </p>
51   */
52  
53  public class RelativisticJ2ClockInterSatellitesPhaseModifierTest {
54  
55      /** Date. */
56      private static AbsoluteDate date;
57  
58      /** Spacecraft states. */
59      private static SpacecraftState[] states;
60  
61      @Deprecated
62      @Test
63      public void testRelativisticClockCorrectionDeprecated() {
64  
65          // Measurement
66          final double wavelength = PredefinedGnssSignal.G01.getWavelength();
67          final InterSatellitesPhase phase = new InterSatellitesPhase(new ObservableSatellite(0), new ObservableSatellite(1),
68                                                                      date,
69                                                                      Vector3D.distance(states[0].getPosition(),
70                                                                                        states[1].getPosition()) / wavelength,
71                                                                      wavelength, 1.0, 1.0,
72                                                                      new AmbiguityCache());
73  
74          // Inter-satellites phase before applying the modifier
75          final EstimatedMeasurementBase<InterSatellitesPhase> estimatedBefore = phase.estimateWithoutDerivatives(states);
76  
77          // Inter-satellites phase after applying the modifier
78          final EstimationModifier<InterSatellitesPhase> modifier = new RelativisticJ2ClockInterSatellitesPhaseModifier(Constants.WGS84_EARTH_MU,
79                                                                                                                        Constants.WGS84_EARTH_C20, Constants.WGS84_EARTH_EQUATORIAL_RADIUS );
80          phase.addModifier(modifier);
81          final EstimatedMeasurement<InterSatellitesPhase> estimatedAfter = phase.estimate(0, 0, states);
82  
83          // Verify : According to Teunissen and Montenbruck, the delay is supposed to be around 62 ps for Galileo.
84          //          The computed value is equal to 67.284 ps, therefore lying in the supposed range.
85          Assertions.assertEquals(-0.106217, estimatedBefore.getEstimatedValue()[0] - estimatedAfter.getEstimatedValue()[0], 1.0e-6);
86          Assertions.assertEquals(0, modifier.getParametersDrivers().size());
87          Assertions.assertEquals(1,
88                                  estimatedAfter.getAppliedEffects().entrySet().stream().
89                                  filter(e -> e.getKey().getEffectName().equals("J₂ clock relativity")).count());
90  
91      }
92  
93      @Test
94      public void testRelativisticClockCorrection() {
95  
96          // Measurement
97          final AmbiguityCache cache = new AmbiguityCache();
98          final double wavelength = PredefinedGnssSignal.G01.getWavelength();
99          final InterSatellitesPhase phase = new InterSatellitesPhase(new ObservableSatellite(0), new ObservableSatellite(1),
100                                                                     date,
101                                                                     Vector3D.distance(states[0].getPosition(),
102                                                                                       states[1].getPosition()) / wavelength,
103                                                                     wavelength, 1.0, 1.0,
104                                                                     cache);
105 
106         // Inter-satellites phase before applying the modifier
107         final EstimatedMeasurementBase<InterSatellitesPhase> estimatedBefore = phase.estimateWithoutDerivatives(states);
108 
109         // Inter-satellites phase after applying the modifier
110         final EstimationModifier<InterSatellitesPhase> modifier = new RelativisticJ2ClockInterSatellitesPhaseModifier(Constants.WGS84_EARTH_MU,
111                                                                                                                       Constants.WGS84_EARTH_C20, Constants.WGS84_EARTH_EQUATORIAL_RADIUS );
112         phase.addModifier(modifier);
113         final EstimatedMeasurement<InterSatellitesPhase> estimatedAfter = phase.estimate(0, 0, states);
114 
115         // Verify : According to Teunissen and Montenbruck, the delay is supposed to be around 62 ps for Galileo.
116         //          The computed value is equal to 67.284 ps, therefore lying in the supposed range.
117         Assertions.assertEquals(-0.106217, estimatedBefore.getEstimatedValue()[0] - estimatedAfter.getEstimatedValue()[0], 1.0e-6);
118         Assertions.assertEquals(0, modifier.getParametersDrivers().size());
119 
120     }
121 
122     @BeforeEach
123     public void setUp() {
124         // Data root
125         Utils.setDataRoot("regular-data");
126 
127         // Date
128         date = new AbsoluteDate("2004-01-13T00:00:00.000", TimeScalesFactory.getUTC());
129 
130         // Spacecraft states
131         states = new SpacecraftState[2];
132         final TLE local = new TLE("1 27642U 03002A   04013.91734903  .00000108  00000-0  12227-4 0  3621",
133                                   "2 27642  93.9970   6.8623 0003169  80.1383 280.0205 14.90871424 54508");
134         final TLE remote = new TLE("1 20061U 89044A   04013.44391333  .00000095  00000-0  10000-3 0  3242",
135                                    "2 20061  53.4233 172.2072 0234017 261.4179  95.8975  2.00577231106949");
136         states[0] = TLEPropagator.selectExtrapolator(local).propagate(date);
137         states[1] = TLEPropagator.selectExtrapolator(remote).propagate(date);
138     }
139 
140 }