1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.estimation.measurements.modifiers;
18  
19  import org.hipparchus.geometry.euclidean.threed.Vector3D;
20  import org.junit.jupiter.api.Assertions;
21  import org.junit.jupiter.api.BeforeEach;
22  import org.junit.jupiter.api.Test;
23  import org.orekit.Utils;
24  import org.orekit.estimation.measurements.EstimatedMeasurement;
25  import org.orekit.estimation.measurements.EstimatedMeasurementBase;
26  import org.orekit.estimation.measurements.EstimationModifier;
27  import org.orekit.estimation.measurements.InterSatellitesRange;
28  import org.orekit.estimation.measurements.ObservableSatellite;
29  import org.orekit.propagation.SpacecraftState;
30  import org.orekit.propagation.analytical.tle.TLE;
31  import org.orekit.propagation.analytical.tle.TLEPropagator;
32  import org.orekit.time.AbsoluteDate;
33  import org.orekit.time.TimeScalesFactory;
34  import org.orekit.utils.Constants;
35  
36  /**
37   * Check against prediction in
38   *
39   * "Springer Handbook oƒ Global Navigation Satellite Systems, Teunissen, Montenbruck"
40   *
41   * An approximate value is given in terms of delay for Galileo satellites.
42   * As these satellites are close to GPS satellites, we consider the delays to be
43   * of the same order, namely around 62ps.
44   *
45   * The values produced by the modifiers are translated in terms of delay and checked against
46   * the approximate value.
47   */
48  
49  public class RelativisticJ2ClockInterSatellitesRangeModifierTest {
50  
51      /** Date. */
52      private static AbsoluteDate date;
53  
54      /** Spacecraft states. */
55      private static SpacecraftState[] states;
56  
57      @Test
58      public void testRelativisticClockCorrection() {
59  
60          // Measurement
61          final InterSatellitesRange range = new InterSatellitesRange(new ObservableSatellite(0), new ObservableSatellite(1),
62                                                                      false, date,
63                                                                      Vector3D.distance(states[0].getPosition(),
64                                                                                        states[1].getPosition()),
65                                                                      1.0, 1.0);
66  
67          // Inter-satellites range before applying the modifier
68          final EstimatedMeasurementBase<InterSatellitesRange> estimatedBefore = range.estimateWithoutDerivatives(states);
69  
70          // Inter-satellites range before applying the modifier
71          final EstimationModifier<InterSatellitesRange> modifier = new RelativisticJ2ClockInterSatellitesRangeModifier(Constants.WGS84_EARTH_MU,
72                  Constants.WGS84_EARTH_C20, Constants.WGS84_EARTH_EQUATORIAL_RADIUS );
73          range.addModifier(modifier);
74          final EstimatedMeasurement<InterSatellitesRange> estimatedAfter = range.estimate(0, 0, states);
75  
76          // Verify : According to Teunissen and Montenbruck, the delay is supposed to be around 62 ps for Galileo.
77          //          The computed value is equal to 67.375 ps, therefore lying in the supposed range.
78          Assertions.assertEquals(-0.0202125, estimatedBefore.getEstimatedValue()[0] - estimatedAfter.getEstimatedValue()[0], 1.0e-2);
79          Assertions.assertEquals(0, modifier.getParametersDrivers().size());
80          Assertions.assertEquals(1,
81                                  estimatedAfter.getAppliedEffects().entrySet().stream().
82                                  filter(e -> e.getKey().getEffectName().equals("J₂ clock relativity")).count());
83  
84      }
85  
86      @BeforeEach
87      public void setUp() {
88          // Data root
89          Utils.setDataRoot("regular-data");
90  
91          // Date
92          date = new AbsoluteDate("2004-01-13T00:00:00.000", TimeScalesFactory.getUTC());
93  
94          // Spacecraft states
95          states = new SpacecraftState[2];
96          final TLE local = new TLE("1 27642U 03002A   04013.91734903  .00000108  00000-0  12227-4 0  3621",
97                                    "2 27642  93.9970   6.8623 0003169  80.1383 280.0205 14.90871424 54508");
98          final TLE remote = new TLE("1 20061U 89044A   04013.44391333  .00000095  00000-0  10000-3 0  3242",
99                                     "2 20061  53.4233 172.2072 0234017 261.4179  95.8975  2.00577231106949");
100         states[0] = TLEPropagator.selectExtrapolator(local).propagate(date);
101         states[1] = TLEPropagator.selectExtrapolator(remote).propagate(date);
102     }
103 
104 }