1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.forces.gravity.potential;
18  
19  import org.hipparchus.util.FastMath;
20  import org.orekit.errors.OrekitException;
21  import org.orekit.errors.OrekitMessages;
22  
23  /** Utility for converting between (degree, order) indices and one-dimensional flatten index.
24   * <p>
25   * The outer loop in {@link org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel}
26   * if in decreasing order and the inner loop is in increasing degree (starting
27   * from the diagonal). This utility converts (degree, order) indices into a flatten index
28   * in a one-dimensional array that increases as these loops are performed.
29   * This means the first element of the one-dimensional array corresponds to diagonal
30   * element at maximum order and the last element corresponds to order 0 and maximum degree.
31   * </p>
32   * @author Luc Maisonobe
33   * @since 11.1
34   */
35  class Flattener {
36  
37      /** Degree of the spherical harmonics. */
38      private final int degree;
39  
40      /** Order of the spherical harmonics. */
41      private final int order;
42  
43      /** Number of high order cells dropped in the triangular array. */
44      private final int dropped;
45  
46      /** Simple constructor.
47       * @param degree degree of the spherical harmonics
48       * @param order order of the spherical harmonics
49        */
50      Flattener(final int degree, final int order) {
51          this.degree  = degree;
52          this.order   = order;
53          this.dropped = (degree - order + 1) * (degree - order) / 2;
54      }
55  
56      /** Get the degree of the spherical harmonics.
57       * @return degree of the spherical harmonics
58       */
59      public int getDegree() {
60          return degree;
61      }
62  
63      /** Get the order of the spherical harmonics.
64       * @return order of the spherical harmonics
65       */
66      public int getOrder() {
67          return order;
68      }
69  
70      /** Convert (degree, order) indices to one-dimensional flatten index.
71       * <p>
72       * As the outer loop in {@link org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel}
73       * if on decreasing order and the inner loop is in increasing degree (starting
74       * from the diagonal), the flatten index increases as these loops are performed.
75       * </p>
76       * @param n degree index (must be within range, otherwise an exception is thrown)
77       * @param m order index (must be within range, otherwise an exception is thrown)
78       * @return one-dimensional flatten index
79       * @see #withinRange(int, int)
80       */
81      public int index(final int n, final int m) {
82          if (!withinRange(n, m)) {
83              throw new OrekitException(OrekitMessages.WRONG_DEGREE_OR_ORDER, n, m, degree, order);
84          }
85          final int dm = degree - m;
86          return dm * (dm + 1) / 2 + (n - m) - dropped;
87      }
88  
89      /** Get the size of a flatten array sufficient to hold all coefficients.
90       * @return size of a flatten array sufficient to hold all coefficients
91       */
92      public int arraySize() {
93          return index(degree, 0) + 1;
94      }
95  
96      /** Check if indices are within range.
97       * @param n degree
98       * @param m order
99       * @return true if indices are within limits, false otherwise
100      */
101     public boolean withinRange(final int n, final int m) {
102         return n >= 0 && n <= degree && m >= 0 && m <= FastMath.min(n, order);
103     }
104 
105     /** Flatten a triangular array.
106      * @param triangular triangular array to flatten
107      * @return flatten array
108      */
109     public double[] flatten(final double[][] triangular) {
110         final double[] flat = new double[arraySize()];
111         for (int n = 0; n <= getDegree(); ++n) {
112             for (int m = 0; m <= FastMath.min(n, getOrder()); ++m) {
113                 flat[index(n, m)] = triangular[n][m];
114             }
115         }
116         return flat;
117     }
118 
119 }