1 /* Copyright 2002-2025 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.time; 18 19 import java.io.Serializable; 20 import java.time.Instant; 21 import java.time.LocalDateTime; 22 import java.time.ZoneOffset; 23 import java.time.format.DateTimeFormatter; 24 import java.util.Date; 25 import java.util.TimeZone; 26 27 import java.util.concurrent.TimeUnit; 28 import org.hipparchus.util.FastMath; 29 import org.orekit.annotation.DefaultDataContext; 30 import org.orekit.data.DataContext; 31 import org.orekit.errors.OrekitIllegalArgumentException; 32 import org.orekit.utils.Constants; 33 34 /** This class represents a specific instant in time. 35 36 * <p>Instances of this class are considered to be absolute in the sense 37 * that each one represent the occurrence of some event and can be compared 38 * to other instances or located in <em>any</em> {@link TimeScale time scale}. In 39 * other words the different locations of an event with respect to two different 40 * time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are 41 * simply different perspective related to a single object. Only one 42 * <code>AbsoluteDate</code> instance is needed, both representations being available 43 * from this single instance by specifying the time scales as parameter when calling 44 * the ad-hoc methods.</p> 45 * 46 * <p>Since an instance is not bound to a specific time-scale, all methods related 47 * to the location of the date within some time scale require to provide the time 48 * scale as an argument. It is therefore possible to define a date in one time scale 49 * and to use it in another one. An example of such use is to read a date from a file 50 * in UTC and write it in another file in TAI. This can be done as follows:</p> 51 * <pre> 52 * DateTimeComponents utcComponents = readNextDate(); 53 * AbsoluteDate date = new AbsoluteDate(utcComponents, TimeScalesFactory.getUTC()); 54 * writeNextDate(date.getComponents(TimeScalesFactory.getTAI())); 55 * </pre> 56 * 57 * <p>Two complementary views are available:</p> 58 * <ul> 59 * <li><p>location view (mainly for input/output or conversions)</p> 60 * <p>locations represent the coordinate of one event with respect to a 61 * {@link TimeScale time scale}. The related methods are {@link 62 * #AbsoluteDate(DateComponents, TimeComponents, TimeScale)}, {@link 63 * #AbsoluteDate(int, int, int, int, int, double, TimeScale)}, {@link 64 * #AbsoluteDate(int, int, int, TimeScale)}, {@link #AbsoluteDate(Date, 65 * TimeScale)}, {@link #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])}, 66 * {@link #toDate(TimeScale)}, {@link #toString(TimeScale) toString(timeScale)}, 67 * {@link #toString()}, and {@link #timeScalesOffset}.</p> 68 * </li> 69 * <li><p>offset view (mainly for physical computation)</p> 70 * <p>offsets represent either the flow of time between two events 71 * (two instances of the class) or durations. They are counted in seconds, 72 * are continuous and could be measured using only a virtually perfect stopwatch. 73 * The related methods are {@link #AbsoluteDate(AbsoluteDate, double)}, 74 * {@link #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate)}, 75 * {@link #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents)}, 76 * {@link #durationFrom(AbsoluteDate)}, {@link #compareTo(TimeOffset)}, {@link #equals(Object)} 77 * and {@link #hashCode()}.</p> 78 * </li> 79 * </ul> 80 * <p> 81 * A few reference epochs which are commonly used in space systems have been defined. These 82 * epochs can be used as the basis for offset computation. The supported epochs are: 83 * {@link #JULIAN_EPOCH}, {@link #MODIFIED_JULIAN_EPOCH}, {@link #FIFTIES_EPOCH}, 84 * {@link #CCSDS_EPOCH}, {@link #GALILEO_EPOCH}, {@link #GPS_EPOCH}, {@link #QZSS_EPOCH} 85 * {@link #J2000_EPOCH}, {@link #JAVA_EPOCH}. 86 * There are also two factory methods {@link #createJulianEpoch(double)} 87 * and {@link #createBesselianEpoch(double)} that can be used to compute other reference 88 * epochs like J1900.0 or B1950.0. 89 * In addition to these reference epochs, two other constants are defined for convenience: 90 * {@link #PAST_INFINITY} and {@link #FUTURE_INFINITY}, which can be used either as dummy 91 * dates when a date is not yet initialized, or for initialization of loops searching for 92 * a min or max date. 93 * </p> 94 * <p> 95 * Instances of the <code>AbsoluteDate</code> class are guaranteed to be immutable. 96 * </p> 97 * @author Luc Maisonobe 98 * @author Evan Ward 99 * @see TimeScale 100 * @see TimeStamped 101 * @see ChronologicalComparator 102 */ 103 public class AbsoluteDate 104 extends TimeOffset 105 implements TimeStamped, TimeShiftable<AbsoluteDate>, Comparable<TimeOffset>, Serializable { 106 107 /** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time. 108 * <p>Both <code>java.util.Date</code> and {@link DateComponents} classes 109 * follow the astronomical conventions and consider a year 0 between 110 * years -1 and +1, hence this reference date lies in year -4712 and not 111 * in year -4713 as can be seen in other documents or programs that obey 112 * a different convention (for example the <code>convcal</code> utility).</p> 113 * 114 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 115 * 116 * @see TimeScales#getJulianEpoch() 117 */ 118 @DefaultDataContext 119 public static final AbsoluteDate JULIAN_EPOCH = DataContext.getDefault().getTimeScales().getJulianEpoch(); 120 121 /** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time. 122 * 123 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 124 * 125 * @see TimeScales#getModifiedJulianEpoch() 126 */ 127 @DefaultDataContext 128 public static final AbsoluteDate MODIFIED_JULIAN_EPOCH = DataContext.getDefault().getTimeScales().getModifiedJulianEpoch(); 129 130 /** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time. 131 * 132 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 133 * 134 * @see TimeScales#getFiftiesEpoch() 135 */ 136 @DefaultDataContext 137 public static final AbsoluteDate FIFTIES_EPOCH = DataContext.getDefault().getTimeScales().getFiftiesEpoch(); 138 139 /** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4): 140 * 1958-01-01T00:00:00 International Atomic Time (<em>not</em> UTC). 141 * 142 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 143 * 144 * @see TimeScales#getCcsdsEpoch() 145 */ 146 @DefaultDataContext 147 public static final AbsoluteDate CCSDS_EPOCH = DataContext.getDefault().getTimeScales().getCcsdsEpoch(); 148 149 /** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 GST. 150 * 151 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 152 * 153 * @see TimeScales#getGalileoEpoch() 154 */ 155 @DefaultDataContext 156 public static final AbsoluteDate GALILEO_EPOCH = DataContext.getDefault().getTimeScales().getGalileoEpoch(); 157 158 /** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time. 159 * 160 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 161 * 162 * @see TimeScales#getGpsEpoch() 163 */ 164 @DefaultDataContext 165 public static final AbsoluteDate GPS_EPOCH = DataContext.getDefault().getTimeScales().getGpsEpoch(); 166 167 /** Reference epoch for QZSS weeks: 1980-01-06T00:00:00 QZSS time. 168 * 169 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 170 * 171 * @see TimeScales#getQzssEpoch() 172 */ 173 @DefaultDataContext 174 public static final AbsoluteDate QZSS_EPOCH = DataContext.getDefault().getTimeScales().getQzssEpoch(); 175 176 /** Reference epoch for NavIC weeks: 1999-08-22T00:00:00 NavIC time. 177 * 178 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 179 * 180 * @see TimeScales#getNavicEpoch() 181 */ 182 @DefaultDataContext 183 public static final AbsoluteDate NAVIC_EPOCH = DataContext.getDefault().getTimeScales().getNavicEpoch(); 184 185 /** Reference epoch for BeiDou weeks: 2006-01-01T00:00:00 UTC. 186 * 187 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 188 * 189 * @see TimeScales#getBeidouEpoch() 190 */ 191 @DefaultDataContext 192 public static final AbsoluteDate BEIDOU_EPOCH = DataContext.getDefault().getTimeScales().getBeidouEpoch(); 193 194 /** Reference epoch for GLONASS four-year interval number: 1996-01-01T00:00:00 GLONASS time. 195 * <p>By convention, TGLONASS = UTC + 3 hours.</p> 196 * 197 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 198 * 199 * @see TimeScales#getGlonassEpoch() 200 */ 201 @DefaultDataContext 202 public static final AbsoluteDate GLONASS_EPOCH = DataContext.getDefault().getTimeScales().getGlonassEpoch(); 203 204 /** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (<em>not</em> UTC). 205 * 206 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 207 * 208 * @see #createJulianEpoch(double) 209 * @see #createBesselianEpoch(double) 210 * @see TimeScales#getJ2000Epoch() 211 */ 212 @DefaultDataContext 213 public static final AbsoluteDate J2000_EPOCH = DataContext.getDefault().getTimeScales().getJ2000Epoch(); 214 215 /** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate. 216 * <p> 217 * Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s. 218 * As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s 219 * </p> 220 * 221 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 222 * 223 * @see TimeScales#getJavaEpoch() 224 */ 225 @DefaultDataContext 226 public static final AbsoluteDate JAVA_EPOCH = DataContext.getDefault().getTimeScales().getJavaEpoch(); 227 228 /** 229 * An arbitrary finite date. Uses when a non-null date is needed but its value doesn't 230 * matter. 231 */ 232 public static final AbsoluteDate ARBITRARY_EPOCH = new AbsoluteDate(TimeOffset.ZERO); 233 234 /** Dummy date at infinity in the past direction. 235 * @see TimeScales#getPastInfinity() 236 */ 237 public static final AbsoluteDate PAST_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.NEGATIVE_INFINITY); 238 239 /** Dummy date at infinity in the future direction. 240 * @see TimeScales#getFutureInfinity() 241 */ 242 public static final AbsoluteDate FUTURE_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.POSITIVE_INFINITY); 243 244 /** Serializable UID. */ 245 private static final long serialVersionUID = 20240711L; 246 247 /** Create an instance with a default value ({@link #J2000_EPOCH}). 248 * 249 * <p>This constructor uses the {@link DataContext#getDefault() default data context}. 250 * 251 * @see #AbsoluteDate(DateTimeComponents, TimeScale) 252 */ 253 @DefaultDataContext 254 public AbsoluteDate() { 255 super(J2000_EPOCH.getSeconds(), J2000_EPOCH.getAttoSeconds()); 256 } 257 258 /** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}. 259 * <p> 260 * The supported formats for location are mainly the ones defined in ISO-8601 standard, 261 * the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)}, 262 * {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}. 263 * </p> 264 * <p> 265 * As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601, 266 * it is also supported by this constructor. 267 * </p> 268 * @param location location in the time scale, must be in a supported format 269 * @param timeScale time scale 270 * @exception IllegalArgumentException if location string is not in a supported format 271 */ 272 public AbsoluteDate(final String location, final TimeScale timeScale) { 273 this(DateTimeComponents.parseDateTime(location), timeScale); 274 } 275 276 /** Build an instance from a location in a {@link TimeScale time scale}. 277 * @param location location in the time scale 278 * @param timeScale time scale 279 */ 280 public AbsoluteDate(final DateTimeComponents location, final TimeScale timeScale) { 281 this(location.getDate(), location.getTime(), timeScale); 282 } 283 284 /** Build an instance from a location in a {@link TimeScale time scale}. 285 * @param date date location in the time scale 286 * @param time time location in the time scale 287 * @param timeScale time scale 288 */ 289 public AbsoluteDate(final DateComponents date, final TimeComponents time, 290 final TimeScale timeScale) { 291 // epoch is at 12:00 (close to J2000.0, but in TAI scale), hence the subtraction of 720 minutes 292 super(new TimeOffset(60L * ((date.getJ2000Day() * 24L + time.getHour()) * 60L + 293 time.getMinute() - time.getMinutesFromUTC() - 720L), 294 0L), 295 time.getSplitSecond(), 296 timeScale.offsetToTAI(date, time)); 297 } 298 299 /** Build an instance from a location in a {@link TimeScale time scale}. 300 * @param year year number (may be 0 or negative for BC years) 301 * @param month month number from 1 to 12 302 * @param day day number from 1 to 31 303 * @param hour hour number from 0 to 23 304 * @param minute minute number from 0 to 59 305 * @param second second number from 0.0 to 60.0 (excluded) 306 * @param timeScale time scale 307 * @exception IllegalArgumentException if inconsistent arguments 308 * are given (parameters out of range) 309 */ 310 public AbsoluteDate(final int year, final int month, final int day, 311 final int hour, final int minute, final double second, 312 final TimeScale timeScale) throws IllegalArgumentException { 313 this(year, month, day, hour, minute, new TimeOffset(second), timeScale); 314 } 315 316 /** Build an instance from a location in a {@link TimeScale time scale}. 317 * @param year year number (may be 0 or negative for BC years) 318 * @param month month number from 1 to 12 319 * @param day day number from 1 to 31 320 * @param hour hour number from 0 to 23 321 * @param minute minute number from 0 to 59 322 * @param second second number from 0.0 to 60.0 (excluded) 323 * @param timeScale time scale 324 * @exception IllegalArgumentException if inconsistent arguments 325 * are given (parameters out of range) 326 * @since 13.0 327 */ 328 public AbsoluteDate(final int year, final int month, final int day, 329 final int hour, final int minute, final TimeOffset second, 330 final TimeScale timeScale) throws IllegalArgumentException { 331 this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); 332 } 333 334 /** Build an instance from a location in a {@link TimeScale time scale}. 335 * @param year year number (may be 0 or negative for BC years) 336 * @param month month enumerate 337 * @param day day number from 1 to 31 338 * @param hour hour number from 0 to 23 339 * @param minute minute number from 0 to 59 340 * @param second second number from 0.0 to 60.0 (excluded) 341 * @param timeScale time scale 342 * @exception IllegalArgumentException if inconsistent arguments 343 * are given (parameters out of range) 344 */ 345 public AbsoluteDate(final int year, final Month month, final int day, 346 final int hour, final int minute, final double second, 347 final TimeScale timeScale) throws IllegalArgumentException { 348 this(year, month, day, hour, minute, new TimeOffset(second), timeScale); 349 } 350 351 /** Build an instance from a location in a {@link TimeScale time scale}. 352 * @param year year number (may be 0 or negative for BC years) 353 * @param month month enumerate 354 * @param day day number from 1 to 31 355 * @param hour hour number from 0 to 23 356 * @param minute minute number from 0 to 59 357 * @param second second number from 0.0 to 60.0 (excluded) 358 * @param timeScale time scale 359 * @exception IllegalArgumentException if inconsistent arguments 360 * are given (parameters out of range) 361 * @since 13.0 362 */ 363 public AbsoluteDate(final int year, final Month month, final int day, 364 final int hour, final int minute, final TimeOffset second, 365 final TimeScale timeScale) throws IllegalArgumentException { 366 this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); 367 } 368 369 /** Build an instance from a location in a {@link TimeScale time scale}. 370 * <p>The hour is set to 00:00:00.000.</p> 371 * @param date date location in the time scale 372 * @param timeScale time scale 373 * @exception IllegalArgumentException if inconsistent arguments 374 * are given (parameters out of range) 375 */ 376 public AbsoluteDate(final DateComponents date, final TimeScale timeScale) 377 throws IllegalArgumentException { 378 this(date, TimeComponents.H00, timeScale); 379 } 380 381 /** Build an instance from a location in a {@link TimeScale time scale}. 382 * <p>The hour is set to 00:00:00.000.</p> 383 * @param year year number (may be 0 or negative for BC years) 384 * @param month month number from 1 to 12 385 * @param day day number from 1 to 31 386 * @param timeScale time scale 387 * @exception IllegalArgumentException if inconsistent arguments 388 * are given (parameters out of range) 389 */ 390 public AbsoluteDate(final int year, final int month, final int day, 391 final TimeScale timeScale) throws IllegalArgumentException { 392 this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); 393 } 394 395 /** Build an instance from a location in a {@link TimeScale time scale}. 396 * <p>The hour is set to 00:00:00.000.</p> 397 * @param year year number (may be 0 or negative for BC years) 398 * @param month month enumerate 399 * @param day day number from 1 to 31 400 * @param timeScale time scale 401 * @exception IllegalArgumentException if inconsistent arguments 402 * are given (parameters out of range) 403 */ 404 public AbsoluteDate(final int year, final Month month, final int day, 405 final TimeScale timeScale) throws IllegalArgumentException { 406 this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); 407 } 408 409 /** Build an instance from a location in a {@link TimeScale time scale}. 410 * @param location location in the time scale 411 * @param timeScale time scale 412 */ 413 public AbsoluteDate(final Date location, final TimeScale timeScale) { 414 this(new DateComponents(DateComponents.JAVA_EPOCH, (int) (location.getTime() / 86400000L)), 415 new TimeComponents(new TimeOffset(location.getTime() % 86400000L, TimeOffset.MILLISECOND)), 416 timeScale); 417 } 418 419 /** Build an instance from an {@link Instant instant} in a {@link TimeScale time scale}. 420 * 421 * <p>This constructor is provided for those users who wish to provide their own time 422 * scale to control how an {@link Instant} is converted to an {@link AbsoluteDate}. 423 * 424 * <p>Note that {@link Instant} is documented to use the "Java Time Scale", which is a 425 * non-standard time scale that is not well defined, and Orekit does not support it. 426 * Notably it uses seconds that are not SI seconds. {@link Instant}'s time scale may 427 * vary based on many factors, but is documented to be within 1 s of UTC after 428 * 1972-11-04T12:00. 429 * 430 * @param instant in the {@code timeScale}. 431 * @param timeScale of the {@code Instant}. 432 * @since 12.0 433 * @see #AbsoluteDate(Instant, UTCScale) 434 * @see #AbsoluteDate(Instant) 435 */ 436 public AbsoluteDate(final Instant instant, final TimeScale timeScale) { 437 this(new DateComponents(DateComponents.JAVA_EPOCH, (int) (instant.getEpochSecond() / 86400L)), 438 new TimeComponents(TimeOffset.SECOND.multiply(instant.getEpochSecond() % 86400L). 439 add(new TimeOffset(instant.getNano(), TimeUnit.NANOSECONDS))), 440 timeScale); 441 } 442 443 /** Build an instance from an {@link Instant instant} in utc time scale. 444 * @param instant instant in the time scale 445 * @since 12.1 446 * @see #AbsoluteDate(Instant, UTCScale) 447 * @see #AbsoluteDate(Instant, TimeScale) 448 */ 449 @DefaultDataContext 450 public AbsoluteDate(final Instant instant) { 451 this(instant, TimeScalesFactory.getUTC()); 452 } 453 454 /** Build an instance from an {@link Instant instant} in the {@link UTCScale time scale}. 455 * 456 * <p>See the caveats of using {@link Instant} as described in the other {@link 457 * #AbsoluteDate(Instant, TimeScale) constructor}. 458 * 459 * @param instant instant in the time scale 460 * @param utcScale utc time scale 461 * @since 12.1 462 * @see #AbsoluteDate(Instant, TimeScale) 463 * @see #AbsoluteDate(Instant) 464 */ 465 public AbsoluteDate(final Instant instant, final UTCScale utcScale) { 466 this(instant, (TimeScale) utcScale); 467 } 468 469 /** Build an instance from an elapsed duration since another instant. 470 * <p>It is important to note that the elapsed duration is <em>not</em> 471 * the difference between two readings on a time scale. As an example, 472 * the duration between the two instants leading to the readings 473 * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC} 474 * time scale is <em>not</em> 1 second, but a stop watch would have measured 475 * an elapsed duration of 2 seconds between these two instances because a leap 476 * second was introduced at the end of 2005 in this time scale.</p> 477 * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate)} 478 * method.</p> 479 * @param since start instant of the measured duration 480 * @param elapsedDuration physically elapsed duration from the <code>since</code> 481 * instant, as measured in a regular time scale 482 * @see #durationFrom(AbsoluteDate) 483 */ 484 public AbsoluteDate(final AbsoluteDate since, final double elapsedDuration) { 485 this(since, new TimeOffset(elapsedDuration)); 486 } 487 488 /** Build an instance from an elapsed duration since another instant. 489 * <p>It is important to note that the elapsed duration is <em>not</em> 490 * the difference between two readings on a time scale. As an example, 491 * the duration between the two instants leading to the readings 492 * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC} 493 * time scale is <em>not</em> 1 second, but a stop watch would have measured 494 * an elapsed duration of 2 seconds between these two instances because a leap 495 * second was introduced at the end of 2005 in this time scale.</p> 496 * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate)} 497 * method.</p> 498 * @param since start instant of the measured duration 499 * @param elapsedDuration physically elapsed duration from the <code>since</code> 500 * instant, as measured in a regular time scale 501 * @see #durationFrom(AbsoluteDate) 502 * @since 13.0 503 */ 504 public AbsoluteDate(final AbsoluteDate since, final TimeOffset elapsedDuration) { 505 super(since, elapsedDuration); 506 } 507 508 /** Build an instance from an elapsed duration since another instant. 509 * <p>It is important to note that the elapsed duration is <em>not</em> 510 * the difference between two readings on a time scale. As an example, 511 * the duration between the two instants leading to the readings 512 * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC} 513 * time scale is <em>not</em> 1 second, but a stop watch would have measured 514 * an elapsed duration of 2 seconds between these two instances because a leap 515 * second was introduced at the end of 2005 in this time scale.</p> 516 * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate, TimeUnit)} 517 * method.</p> 518 * @param since start instant of the measured duration 519 * @param elapsedDuration physically elapsed duration from the <code>since</code> 520 * instant, as measured in a regular time scale 521 * @param timeUnit {@link TimeUnit} of the elapsedDuration 522 * @see #durationFrom(AbsoluteDate, TimeUnit) 523 * @since 12.1 524 */ 525 public AbsoluteDate(final AbsoluteDate since, final long elapsedDuration, final TimeUnit timeUnit) { 526 this(since, new TimeOffset(elapsedDuration, timeUnit)); 527 } 528 529 /** Build an instance from an apparent clock offset with respect to another 530 * instant <em>in the perspective of a specific {@link TimeScale time scale}</em>. 531 * <p>It is important to note that the apparent clock offset <em>is</em> the 532 * difference between two readings on a time scale and <em>not</em> an elapsed 533 * duration. As an example, the apparent clock offset between the two instants 534 * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the 535 * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2 536 * seconds because a leap second has been introduced at the end of 2005 in this 537 * time scale.</p> 538 * <p>This constructor is the reverse of the {@link #offsetFrom(AbsoluteDate, 539 * TimeScale)} method.</p> 540 * @param reference reference instant 541 * @param apparentOffset apparent clock offset from the reference instant 542 * (difference between two readings in the specified time scale) 543 * @param timeScale time scale with respect to which the offset is defined 544 * @see #offsetFrom(AbsoluteDate, TimeScale) 545 */ 546 public AbsoluteDate(final AbsoluteDate reference, final double apparentOffset, final TimeScale timeScale) { 547 this(reference, new TimeOffset(apparentOffset), timeScale); 548 } 549 550 /** Build an instance from an apparent clock offset with respect to another 551 * instant <em>in the perspective of a specific {@link TimeScale time scale}</em>. 552 * <p>It is important to note that the apparent clock offset <em>is</em> the 553 * difference between two readings on a time scale and <em>not</em> an elapsed 554 * duration. As an example, the apparent clock offset between the two instants 555 * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the 556 * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2 557 * seconds because a leap second has been introduced at the end of 2005 in this 558 * time scale.</p> 559 * <p>This constructor is the reverse of the {@link #offsetFrom(AbsoluteDate, 560 * TimeScale)} method.</p> 561 * @param reference reference instant 562 * @param apparentOffset apparent clock offset from the reference instant 563 * (difference between two readings in the specified time scale) 564 * @param timeScale time scale with respect to which the offset is defined 565 * @see #offsetFrom(AbsoluteDate, TimeScale) 566 * @since 13.0 567 */ 568 public AbsoluteDate(final AbsoluteDate reference, final TimeOffset apparentOffset, final TimeScale timeScale) { 569 this(new DateTimeComponents(reference.getComponents(timeScale), apparentOffset), 570 timeScale); 571 } 572 573 /** Build a date from an offset since a reference epoch. 574 * @param offset offset since reference epoch 2000-01-01T12:00:00 TAI. 575 * (beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT) 576 * @since 13.0 577 */ 578 public AbsoluteDate(final TimeOffset offset) { 579 super(offset); 580 } 581 582 /** Build an instance from a CCSDS Unsegmented Time Code (CUC). 583 * <p> 584 * CCSDS Unsegmented Time Code is defined in the blue book: 585 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 586 * </p> 587 * <p> 588 * If the date to be parsed is formatted using version 3 of the standard 589 * (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble 590 * field introduced in version 4 of the standard is not used, then the 591 * {@code preambleField2} parameter can be set to 0. 592 * </p> 593 * 594 * <p>This method uses the {@link DataContext#getDefault() default data context} if 595 * the CCSDS epoch is used. 596 * 597 * @param preambleField1 first byte of the field specifying the format, often 598 * not transmitted in data interfaces, as it is constant for a given data interface 599 * @param preambleField2 second byte of the field specifying the format 600 * (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data 601 * interfaces, as it is constant for a given data interface (value ignored if presence 602 * not signaled in {@code preambleField1}) 603 * @param timeField byte array containing the time code 604 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 605 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 606 * may be null in this case) 607 * @return an instance corresponding to the specified date 608 * @see #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate, AbsoluteDate) 609 */ 610 @DefaultDataContext 611 public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(final byte preambleField1, 612 final byte preambleField2, 613 final byte[] timeField, 614 final AbsoluteDate agencyDefinedEpoch) { 615 return parseCCSDSUnsegmentedTimeCode(preambleField1, preambleField2, timeField, 616 agencyDefinedEpoch, 617 DataContext.getDefault().getTimeScales().getCcsdsEpoch()); 618 } 619 620 /** 621 * Build an instance from a CCSDS Unsegmented Time Code (CUC). 622 * <p> 623 * CCSDS Unsegmented Time Code is defined in the blue book: CCSDS Time Code Format 624 * (CCSDS 301.0-B-4) published in November 2010 625 * </p> 626 * <p> 627 * If the date to be parsed is formatted using version 3 of the standard (CCSDS 628 * 301.0-B-3 published in 2002) or if the extension of the preamble field introduced 629 * in version 4 of the standard is not used, then the {@code preambleField2} parameter 630 * can be set to 0. 631 * </p> 632 * 633 * @param preambleField1 first byte of the field specifying the format, often not 634 * transmitted in data interfaces, as it is constant for a 635 * given data interface 636 * @param preambleField2 second byte of the field specifying the format (added in 637 * revision 4 of the CCSDS standard in 2010), often not 638 * transmitted in data interfaces, as it is constant for a 639 * given data interface (value ignored if presence not 640 * signaled in {@code preambleField1}) 641 * @param timeField byte array containing the time code 642 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies 643 * the {@link DateComponents#CCSDS_EPOCH CCSDS reference epoch} is used 644 * (and hence may be null in this case, but then {@code ccsdsEpoch} must be non-null) 645 * @param ccsdsEpoch reference epoch, ignored if the preamble field specifies 646 * the agency epoch is used (and hence may be null in this case, 647 * but then {@code agencyDefinedEpoch} must be non-null). 648 * @return an instance corresponding to the specified date 649 * @since 10.1 650 */ 651 public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(final byte preambleField1, 652 final byte preambleField2, 653 final byte[] timeField, 654 final AbsoluteDate agencyDefinedEpoch, 655 final AbsoluteDate ccsdsEpoch) { 656 final CcsdsUnsegmentedTimeCode<AbsoluteDate> timeCode = 657 new CcsdsUnsegmentedTimeCode<>(preambleField1, preambleField2, timeField, agencyDefinedEpoch, ccsdsEpoch); 658 return timeCode.getEpoch().shiftedBy(timeCode.getTime()); 659 660 } 661 662 /** Build an instance from a CCSDS Day Segmented Time Code (CDS). 663 * <p> 664 * CCSDS Day Segmented Time Code is defined in the blue book: 665 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 666 * </p> 667 * 668 * <p>This method uses the {@link DataContext#getDefault() default data context}. 669 * 670 * @param preambleField field specifying the format, often not transmitted in 671 * data interfaces, as it is constant for a given data interface 672 * @param timeField byte array containing the time code 673 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 674 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 675 * may be null in this case) 676 * @return an instance corresponding to the specified date 677 * @see #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents, TimeScale) 678 */ 679 @DefaultDataContext 680 public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(final byte preambleField, final byte[] timeField, 681 final DateComponents agencyDefinedEpoch) { 682 return parseCCSDSDaySegmentedTimeCode(preambleField, timeField, 683 agencyDefinedEpoch, DataContext.getDefault().getTimeScales().getUTC()); 684 } 685 686 /** Build an instance from a CCSDS Day Segmented Time Code (CDS). 687 * <p> 688 * CCSDS Day Segmented Time Code is defined in the blue book: 689 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 690 * </p> 691 * @param preambleField field specifying the format, often not transmitted in 692 * data interfaces, as it is constant for a given data interface 693 * @param timeField byte array containing the time code 694 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 695 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 696 * may be null in this case) 697 * @param utc time scale used to compute date and time components. 698 * @return an instance corresponding to the specified date 699 * @since 10.1 700 */ 701 public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(final byte preambleField, 702 final byte[] timeField, 703 final DateComponents agencyDefinedEpoch, 704 final TimeScale utc) { 705 706 final CcsdsSegmentedTimeCode timeCode = new CcsdsSegmentedTimeCode(preambleField, timeField, 707 agencyDefinedEpoch); 708 return new AbsoluteDate(timeCode.getDate(), timeCode.getTime(), utc); 709 } 710 711 /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). 712 * <p> 713 * CCSDS Calendar Segmented Time Code is defined in the blue book: 714 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 715 * </p> 716 * 717 * <p>This method uses the {@link DataContext#getDefault() default data context}. 718 * 719 * @param preambleField field specifying the format, often not transmitted in 720 * data interfaces, as it is constant for a given data interface 721 * @param timeField byte array containing the time code 722 * @return an instance corresponding to the specified date 723 * @see #parseCCSDSCalendarSegmentedTimeCode(byte, byte[], TimeScale) 724 */ 725 @DefaultDataContext 726 public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField) { 727 return parseCCSDSCalendarSegmentedTimeCode(preambleField, timeField, 728 DataContext.getDefault().getTimeScales().getUTC()); 729 } 730 731 /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). 732 * <p> 733 * CCSDS Calendar Segmented Time Code is defined in the blue book: 734 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 735 * </p> 736 * @param preambleField field specifying the format, often not transmitted in 737 * data interfaces, as it is constant for a given data interface 738 * @param timeField byte array containing the time code 739 * @param utc time scale used to compute date and time components. 740 * @return an instance corresponding to the specified date 741 * @since 10.1 742 */ 743 public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, 744 final byte[] timeField, 745 final TimeScale utc) { 746 final CcsdsSegmentedTimeCode timeCode = new CcsdsSegmentedTimeCode(preambleField, timeField); 747 return new AbsoluteDate(timeCode.getDate(), timeCode.getTime(), utc); 748 } 749 750 /** Build an instance corresponding to a Julian Day date. 751 * @param jd Julian day 752 * @param secondsSinceNoon seconds in the Julian day 753 * (BEWARE, Julian days start at noon, so 0.0 is noon) 754 * @param timeScale time scale in which the seconds in day are defined 755 * @return a new instant 756 */ 757 public static AbsoluteDate createJDDate(final int jd, final double secondsSinceNoon, 758 final TimeScale timeScale) { 759 return new AbsoluteDate(new DateComponents(DateComponents.JULIAN_EPOCH, jd), 760 TimeComponents.H12, timeScale).shiftedBy(secondsSinceNoon); 761 } 762 763 /** Build an instance corresponding to a Julian Day date. 764 * <p> 765 * This function should be preferred to {@link #createMJDDate(int, double, TimeScale)} when the target time scale 766 * has a non-constant offset with respect to TAI. 767 * </p> 768 * <p> 769 * The idea is to introduce a pivot time scale that is close to the target time scale but has a constant bias with TAI. 770 * </p> 771 * <p> 772 * For example, to get a date from an MJD in TDB time scale, it's advised to use the TT time scale 773 * as a pivot scale. TT is very close to TDB and has constant offset to TAI. 774 * </p> 775 * @param jd Julian day 776 * @param secondsSinceNoon seconds in the Julian day 777 * (BEWARE, Julian days start at noon, so 0.0 is noon) 778 * @param timeScale timescale in which the seconds in day are defined 779 * @param pivotTimeScale pivot timescale used as intermediate timescale 780 * @return a new instant 781 */ 782 public static AbsoluteDate createJDDate(final int jd, final double secondsSinceNoon, 783 final TimeScale timeScale, 784 final TimeScale pivotTimeScale) { 785 // Get the date in pivot timescale 786 final AbsoluteDate dateInPivotTimeScale = createJDDate(jd, secondsSinceNoon, pivotTimeScale); 787 788 // Compare offsets to TAI of the two time scales 789 final TimeOffset offsetFromTAI = timeScale. 790 offsetFromTAI(dateInPivotTimeScale). 791 subtract(pivotTimeScale.offsetFromTAI(dateInPivotTimeScale)); 792 793 // Return date in desired timescale 794 return new AbsoluteDate(dateInPivotTimeScale, offsetFromTAI.negate()); 795 } 796 797 /** Build an instance corresponding to a Modified Julian Day date. 798 * @param mjd modified Julian day 799 * @param secondsInDay seconds in the day 800 * @param timeScale time scale in which the seconds in day are defined 801 * @return a new instant 802 * @exception OrekitIllegalArgumentException if seconds number is out of range 803 */ 804 public static AbsoluteDate createMJDDate(final int mjd, final double secondsInDay, 805 final TimeScale timeScale) 806 throws OrekitIllegalArgumentException { 807 return createMJDDate(mjd, new TimeOffset(secondsInDay), timeScale); 808 } 809 810 /** Build an instance corresponding to a Modified Julian Day date. 811 * @param mjd modified Julian day 812 * @param secondsInDay seconds in the day 813 * @param timeScale time scale in which the seconds in day are defined 814 * @return a new instant 815 * @exception OrekitIllegalArgumentException if seconds number is out of range 816 * @since 13.0 817 */ 818 public static AbsoluteDate createMJDDate(final int mjd, final TimeOffset secondsInDay, 819 final TimeScale timeScale) 820 throws OrekitIllegalArgumentException { 821 final DateComponents dc = new DateComponents(DateComponents.MODIFIED_JULIAN_EPOCH, mjd); 822 final TimeComponents tc; 823 if (secondsInDay.compareTo(TimeOffset.DAY) >= 0) { 824 // check we are really allowed to use this number of seconds 825 final TimeOffset secondsA = new TimeOffset(86399); // 23:59:59, i.e. 59s in the last minute of the day 826 final TimeOffset secondsB = secondsInDay.subtract(secondsA); 827 final TimeComponents safeTC = new TimeComponents(secondsA); 828 final AbsoluteDate safeDate = new AbsoluteDate(dc, safeTC, timeScale); 829 if (timeScale.minuteDuration(safeDate) > 59 + secondsB.toDouble()) { 830 // we are within the last minute of the day, the number of seconds is OK 831 return safeDate.shiftedBy(secondsB); 832 } else { 833 // let TimeComponents trigger an OrekitIllegalArgumentException 834 // for the wrong number of seconds 835 tc = new TimeComponents(secondsA.add(secondsB)); 836 } 837 } else { 838 tc = new TimeComponents(secondsInDay); 839 } 840 841 // create the date 842 return new AbsoluteDate(dc, tc, timeScale); 843 844 } 845 846 /** Create an instance as the median data between two existing instances. 847 * @param date1 first instance 848 * @param date2 second instance 849 * @return median date between first and second instance 850 * @since 13.0 851 */ 852 public static AbsoluteDate createMedian(final AbsoluteDate date1, final AbsoluteDate date2) { 853 return new AbsoluteDate(date2.add(date1).divide(2)); 854 } 855 856 /** Build an instance corresponding to a Julian Epoch (JE). 857 * <p>According to Lieske paper: <a 858 * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> 859 * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, 860 * vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as:</p> 861 * <pre> 862 * JE = 2000.0 + (JED - 2451545.0) / 365.25 863 * </pre> 864 * <p> 865 * This method reverts the formula above and computes an {@code AbsoluteDate} from the Julian Epoch. 866 * </p> 867 * 868 * <p>This method uses the {@link DataContext#getDefault() default data context}.</p> 869 * 870 * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0 871 * @return a new instant 872 * @see #J2000_EPOCH 873 * @see #createBesselianEpoch(double) 874 * @see TimeScales#createJulianEpoch(double) 875 */ 876 @DefaultDataContext 877 public static AbsoluteDate createJulianEpoch(final double julianEpoch) { 878 return DataContext.getDefault().getTimeScales().createJulianEpoch(julianEpoch); 879 } 880 881 /** Build an instance corresponding to a Besselian Epoch (BE). 882 * <p>According to Lieske paper: <a 883 * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> 884 * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, 885 * vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:</p> 886 * <pre> 887 * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781 888 * </pre> 889 * <p> 890 * This method reverts the formula above and computes an {@code AbsoluteDate} from the Besselian Epoch. 891 * </p> 892 * 893 * <p>This method uses the {@link DataContext#getDefault() default data context}.</p> 894 * 895 * @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0 896 * @return a new instant 897 * @see #createJulianEpoch(double) 898 * @see TimeScales#createBesselianEpoch(double) 899 */ 900 @DefaultDataContext 901 public static AbsoluteDate createBesselianEpoch(final double besselianEpoch) { 902 return DataContext.getDefault().getTimeScales().createBesselianEpoch(besselianEpoch); 903 } 904 905 /** {@inheritDoc} */ 906 @Override 907 public AbsoluteDate shiftedBy(final double dt) { 908 return new AbsoluteDate(this, dt); 909 } 910 911 /** {@inheritDoc} */ 912 @Override 913 public AbsoluteDate shiftedBy(final TimeOffset dt) { 914 return new AbsoluteDate(this, dt); 915 } 916 917 /** Get a time-shifted date. 918 * <p> 919 * Calling this method is equivalent to call <code>new AbsoluteDate(this, shift, timeUnit)</code>. 920 * </p> 921 * @param dt time shift in time units 922 * @param timeUnit {@link TimeUnit} of the shift 923 * @return a new date, shifted with respect to instance (which is immutable) 924 * @since 12.1 925 */ 926 public AbsoluteDate shiftedBy(final long dt, final TimeUnit timeUnit) { 927 return new AbsoluteDate(this, dt, timeUnit); 928 } 929 930 /** Compute the physically elapsed duration between two instants. 931 * <p>The returned duration is the number of seconds physically 932 * elapsed between the two instants, measured in a regular time 933 * scale with respect to surface of the Earth (i.e either the {@link 934 * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link 935 * GPSScale GPS scale}). It is the only method that gives a 936 * duration with a physical meaning.</p> 937 * <p>This method gives the same result (with less computation) 938 * as calling {@link #offsetFrom(AbsoluteDate, TimeScale)} 939 * with a second argument set to one of the regular scales cited 940 * above.</p> 941 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 942 * double)} constructor.</p> 943 * @param instant instant to subtract from the instance 944 * @return offset in seconds between the two instants (positive 945 * if the instance is posterior to the argument) 946 * @see #accurateDurationFrom(AbsoluteDate) 947 * @see #offsetFrom(AbsoluteDate, TimeScale) 948 * @see #AbsoluteDate(AbsoluteDate, double) 949 */ 950 public double durationFrom(final AbsoluteDate instant) { 951 return accurateDurationFrom(instant).toDouble(); 952 } 953 954 /** Compute the physically elapsed duration between two instants. 955 * <p>The returned duration is the number of seconds physically 956 * elapsed between the two instants, measured in a regular time 957 * scale with respect to surface of the Earth (i.e either the {@link 958 * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link 959 * GPSScale GPS scale}). It is the only method that gives a 960 * duration with a physical meaning.</p> 961 * <p>This method gives the same result (with less computation) 962 * as calling {@link #offsetFrom(AbsoluteDate, TimeScale)} 963 * with a second argument set to one of the regular scales cited 964 * above.</p> 965 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 966 * double)} constructor.</p> 967 * @param instant instant to subtract from the instance 968 * @return offset in seconds between the two instants (positive 969 * if the instance is posterior to the argument) 970 * @see #durationFrom(AbsoluteDate) 971 * @see #offsetFrom(AbsoluteDate, TimeScale) 972 * @see #AbsoluteDate(AbsoluteDate, double) 973 * @since 13.0 974 */ 975 public TimeOffset accurateDurationFrom(final AbsoluteDate instant) { 976 return this.subtract(instant); 977 } 978 979 /** Compute the physically elapsed duration between two instants. 980 * <p>The returned duration is the duration physically 981 * elapsed between the two instants, using the given time unit and rounded to the nearest integer, measured in a regular time 982 * scale with respect to surface of the Earth (i.e either the {@link 983 * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link 984 * GPSScale GPS scale}). It is the only method that gives a 985 * duration with a physical meaning.</p> 986 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 987 * long, TimeUnit)} constructor.</p> 988 * @param instant instant to subtract from the instance 989 * @param timeUnit {@link TimeUnit} precision for the offset 990 * @return offset in the given timeunit between the two instants (positive 991 * if the instance is posterior to the argument), rounded to the nearest integer {@link TimeUnit} 992 * @see #AbsoluteDate(AbsoluteDate, long, TimeUnit) 993 * @since 12.1 994 */ 995 public long durationFrom(final AbsoluteDate instant, final TimeUnit timeUnit) { 996 return accurateDurationFrom(instant).getRoundedTime(timeUnit); 997 } 998 999 /** Compute the apparent <em>clock</em> offset between two instant <em>in the 1000 * perspective of a specific {@link TimeScale time scale}</em>. 1001 * <p>The offset is the number of seconds counted in the given 1002 * time scale between the locations of the two instants, with 1003 * all time scale irregularities removed (i.e. considering all 1004 * days are exactly 86400 seconds long). This method will give 1005 * a result that may not have a physical meaning if the time scale 1006 * is irregular. For example since a leap second was introduced at 1007 * the end of 2005, the apparent clock offset between 2005-12-31T23:59:59 1008 * and 2006-01-01T00:00:00 is 1 second and is the value this method 1009 * will return. On the other hand, the physical duration 1010 * of the corresponding time interval as returned by the {@link 1011 * #durationFrom(AbsoluteDate)} method is 2 seconds.</p> 1012 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 1013 * double, TimeScale)} constructor.</p> 1014 * @param instant instant to subtract from the instance 1015 * @param timeScale time scale with respect to which the offset should 1016 * be computed 1017 * @return apparent clock offset in seconds between the two instants 1018 * (positive if the instance is posterior to the argument) 1019 * @see #durationFrom(AbsoluteDate) 1020 * @see #accurateOffsetFrom(AbsoluteDate, TimeScale) 1021 * @see #AbsoluteDate(AbsoluteDate, TimeOffset, TimeScale) 1022 */ 1023 public double offsetFrom(final AbsoluteDate instant, final TimeScale timeScale) { 1024 return accurateOffsetFrom(instant, timeScale).toDouble(); 1025 } 1026 1027 /** Compute the apparent <em>clock</em> offset between two instant <em>in the 1028 * perspective of a specific {@link TimeScale time scale}</em>. 1029 * <p>The offset is the number of seconds counted in the given 1030 * time scale between the locations of the two instants, with 1031 * all time scale irregularities removed (i.e. considering all 1032 * days are exactly 86400 seconds long). This method will give 1033 * a result that may not have a physical meaning if the time scale 1034 * is irregular. For example since a leap second was introduced at 1035 * the end of 2005, the apparent clock offset between 2005-12-31T23:59:59 1036 * and 2006-01-01T00:00:00 is 1 second and is the value this method 1037 * will return. On the other hand, the physical duration 1038 * of the corresponding time interval as returned by the {@link 1039 * #durationFrom(AbsoluteDate)} method is 2 seconds.</p> 1040 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 1041 * double, TimeScale)} constructor.</p> 1042 * @param instant instant to subtract from the instance 1043 * @param timeScale time scale with respect to which the offset should 1044 * be computed 1045 * @return apparent clock offset in seconds between the two instants 1046 * (positive if the instance is posterior to the argument) 1047 * @see #durationFrom(AbsoluteDate) 1048 * @see #offsetFrom(AbsoluteDate, TimeScale) 1049 * @see #AbsoluteDate(AbsoluteDate, TimeOffset, TimeScale) 1050 * @since 13.0 1051 */ 1052 public TimeOffset accurateOffsetFrom(final AbsoluteDate instant, final TimeScale timeScale) { 1053 return new TimeOffset(this, 1054 timeScale.offsetFromTAI(this), 1055 instant.negate(), 1056 timeScale.offsetFromTAI(instant).negate()); 1057 } 1058 1059 /** Compute the offset between two time scales at the current instant. 1060 * <p>The offset is defined as <i>l₁-l₂</i> 1061 * where <i>l₁</i> is the location of the instant in 1062 * the <code>scale1</code> time scale and <i>l₂</i> is the 1063 * location of the instant in the <code>scale2</code> time scale.</p> 1064 * @param scale1 first time scale 1065 * @param scale2 second time scale 1066 * @return offset in seconds between the two time scales at the 1067 * current instant 1068 */ 1069 public double timeScalesOffset(final TimeScale scale1, final TimeScale scale2) { 1070 return scale1.offsetFromTAI(this).subtract(scale2.offsetFromTAI(this)).toDouble(); 1071 } 1072 1073 /** Convert the instance to a Java {@link java.util.Date Date}. 1074 * <p>Conversion to the Date class induces a loss of precision because 1075 * the Date class does not provide sub-millisecond information. Java Dates 1076 * are considered to be locations in some times scales.</p> 1077 * @param timeScale time scale to use 1078 * @return a {@link java.util.Date Date} instance representing the location 1079 * of the instant in the time scale 1080 */ 1081 public Date toDate(final TimeScale timeScale) { 1082 final TimeOffset time = add(timeScale.offsetFromTAI(this)); 1083 return new Date(FastMath.round((time.toDouble() + 10957.5 * Constants.JULIAN_DAY) * 1000)); 1084 } 1085 1086 /** 1087 * Convert the instance to a Java {@link java.time.Instant Instant}. 1088 * Nanosecond precision is preserved during this conversion 1089 * 1090 * @return a {@link java.time.Instant Instant} instance representing the location 1091 * of the instant in the utc time scale 1092 * @since 12.1 1093 */ 1094 @DefaultDataContext 1095 public Instant toInstant() { 1096 return toInstant(TimeScalesFactory.getTimeScales()); 1097 } 1098 1099 /** 1100 * Convert the instance to a Java {@link java.time.Instant Instant}. 1101 * Nanosecond precision is preserved during this conversion 1102 * 1103 * @param timeScales the timescales to use 1104 * @return a {@link java.time.Instant Instant} instance representing the location 1105 * of the instant in the utc time scale 1106 * @since 12.1 1107 */ 1108 public Instant toInstant(final TimeScales timeScales) { 1109 final UTCScale utc = timeScales.getUTC(); 1110 final String stringWithoutUtcOffset = toStringWithoutUtcOffset(utc, 9); 1111 1112 final LocalDateTime localDateTime = LocalDateTime.parse(stringWithoutUtcOffset, DateTimeFormatter.ISO_LOCAL_DATE_TIME); 1113 return localDateTime.toInstant(ZoneOffset.UTC); 1114 } 1115 1116 /** Split the instance into date/time components. 1117 * @param timeScale time scale to use 1118 * @return date/time components 1119 */ 1120 public DateTimeComponents getComponents(final TimeScale timeScale) { 1121 1122 if (!isFinite()) { 1123 // special handling for NaN, past and future infinity 1124 if (isNaN()) { 1125 return new DateTimeComponents(DateComponents.J2000_EPOCH, TimeComponents.NaN); 1126 } else if (isNegativeInfinity()) { 1127 return new DateTimeComponents(DateComponents.MIN_EPOCH, TimeComponents.H00); 1128 } else { 1129 // the fact we truncate at 59.999 seconds is for compatibility reasons 1130 // with pre-13.0 Orekit versions. Indeed, this date is fake and more than 1131 // 5 millions years in the future, so milliseconds are not really relevant 1132 // truncating makes cleaner text output 1133 return new DateTimeComponents(DateComponents.MAX_EPOCH, 1134 new TimeComponents(23, 59, 1135 new TimeOffset(59, TimeOffset.SECOND, 1136 999, TimeOffset.MILLISECOND))); 1137 } 1138 } 1139 1140 final TimeOffset sum = add(timeScale.offsetFromTAI(this)); 1141 1142 // split date and time 1143 final long offset2000A = sum.getSeconds() + 43200L; 1144 long time = offset2000A % 86400L; 1145 if (time < 0L) { 1146 time += 86400L; 1147 } 1148 final int date = (int) ((offset2000A - time) / 86400L); 1149 1150 // extract calendar elements 1151 final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date); 1152 1153 // extract time element, accounting for leap seconds 1154 final TimeOffset leap = timeScale.insideLeap(this) ? timeScale.getLeap(this) : TimeOffset.ZERO; 1155 final int minuteDuration = timeScale.minuteDuration(this); 1156 final TimeComponents timeComponents = new TimeComponents(new TimeOffset(time, sum.getAttoSeconds()), 1157 leap, minuteDuration); 1158 1159 // build the components 1160 return new DateTimeComponents(dateComponents, timeComponents); 1161 1162 } 1163 1164 /** Split the instance into date/time components for a local time. 1165 * 1166 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1167 * 1168 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1169 * negative Westward UTC) 1170 * @return date/time components 1171 * @since 7.2 1172 * @see #getComponents(int, TimeScale) 1173 */ 1174 @DefaultDataContext 1175 public DateTimeComponents getComponents(final int minutesFromUTC) { 1176 return getComponents(minutesFromUTC, 1177 DataContext.getDefault().getTimeScales().getUTC()); 1178 } 1179 1180 /** 1181 * Split the instance into date/time components for a local time. 1182 * 1183 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1184 * negative Westward UTC) 1185 * @param utc time scale used to compute date and time components. 1186 * @return date/time components 1187 * @since 10.1 1188 */ 1189 public DateTimeComponents getComponents(final int minutesFromUTC, 1190 final TimeScale utc) { 1191 1192 final DateTimeComponents utcComponents = getComponents(utc); 1193 1194 // shift the date according to UTC offset, but WITHOUT touching the seconds, 1195 // as they may exceed 60.0 during a leap seconds introduction, 1196 // and we want to preserve these special cases 1197 final TimeOffset seconds = utcComponents.getTime().getSplitSecond(); 1198 1199 int minute = utcComponents.getTime().getMinute() + minutesFromUTC; 1200 final int hourShift; 1201 if (minute < 0) { 1202 hourShift = (minute - 59) / 60; 1203 } else if (minute > 59) { 1204 hourShift = minute / 60; 1205 } else { 1206 hourShift = 0; 1207 } 1208 minute -= 60 * hourShift; 1209 1210 int hour = utcComponents.getTime().getHour() + hourShift; 1211 final int dayShift; 1212 if (hour < 0) { 1213 dayShift = (hour - 23) / 24; 1214 } else if (hour > 23) { 1215 dayShift = hour / 24; 1216 } else { 1217 dayShift = 0; 1218 } 1219 hour -= 24 * dayShift; 1220 1221 return new DateTimeComponents(new DateComponents(utcComponents.getDate(), dayShift), 1222 new TimeComponents(hour, minute, seconds, minutesFromUTC)); 1223 1224 } 1225 1226 /** Split the instance into date/time components for a time zone. 1227 * 1228 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1229 * 1230 * @param timeZone time zone 1231 * @return date/time components 1232 * @since 7.2 1233 * @see #getComponents(TimeZone, TimeScale) 1234 */ 1235 @DefaultDataContext 1236 public DateTimeComponents getComponents(final TimeZone timeZone) { 1237 return getComponents(timeZone, DataContext.getDefault().getTimeScales().getUTC()); 1238 } 1239 1240 /** 1241 * Split the instance into date/time components for a time zone. 1242 * 1243 * @param timeZone time zone 1244 * @param utc time scale used to computed date and time components. 1245 * @return date/time components 1246 * @since 10.1 1247 */ 1248 public DateTimeComponents getComponents(final TimeZone timeZone, 1249 final TimeScale utc) { 1250 final AbsoluteDate javaEpoch = new AbsoluteDate(DateComponents.JAVA_EPOCH, utc); 1251 final long milliseconds = FastMath.round(1000 * offsetFrom(javaEpoch, utc)); 1252 return getComponents(timeZone.getOffset(milliseconds) / 60000, utc); 1253 } 1254 1255 /** {@inheritDoc} */ 1256 public AbsoluteDate getDate() { 1257 return this; 1258 } 1259 1260 /** Check if the instance represents the same time as another. 1261 * @param other the instant to compare this date to 1262 * @return true if the instance and the argument refer to the same instant 1263 * @see #isCloseTo(TimeStamped, double) 1264 * @since 10.1 1265 */ 1266 public boolean isEqualTo(final TimeStamped other) { 1267 return this.equals(other.getDate()); 1268 } 1269 1270 /** Check if the instance time is close to another. 1271 * @param other the instant to compare this date to 1272 * @param tolerance the separation, in seconds, under which the two instants will be considered close to each other 1273 * @return true if the duration between the instance and the argument is strictly below the tolerance 1274 * @see #isEqualTo(TimeStamped) 1275 * @since 10.1 1276 */ 1277 public boolean isCloseTo(final TimeStamped other, final double tolerance) { 1278 return FastMath.abs(this.durationFrom(other.getDate())) < tolerance; 1279 } 1280 1281 /** Check if the instance represents a time that is strictly before another. 1282 * @param other the instant to compare this date to 1283 * @return true if the instance is strictly before the argument when ordering chronologically 1284 * @see #isBeforeOrEqualTo(TimeStamped) 1285 * @since 10.1 1286 */ 1287 public boolean isBefore(final TimeStamped other) { 1288 return this.compareTo(other.getDate()) < 0; 1289 } 1290 1291 /** Check if the instance represents a time that is strictly after another. 1292 * @param other the instant to compare this date to 1293 * @return true if the instance is strictly after the argument when ordering chronologically 1294 * @see #isAfterOrEqualTo(TimeStamped) 1295 * @since 10.1 1296 */ 1297 public boolean isAfter(final TimeStamped other) { 1298 return this.compareTo(other.getDate()) > 0; 1299 } 1300 1301 /** Check if the instance represents a time that is before or equal to another. 1302 * @param other the instant to compare this date to 1303 * @return true if the instance is before (or equal to) the argument when ordering chronologically 1304 * @see #isBefore(TimeStamped) 1305 * @since 10.1 1306 */ 1307 public boolean isBeforeOrEqualTo(final TimeStamped other) { 1308 return this.isEqualTo(other) || this.isBefore(other); 1309 } 1310 1311 /** Check if the instance represents a time that is after or equal to another. 1312 * @param other the instant to compare this date to 1313 * @return true if the instance is after (or equal to) the argument when ordering chronologically 1314 * @see #isAfterOrEqualTo(TimeStamped) 1315 * @since 10.1 1316 */ 1317 public boolean isAfterOrEqualTo(final TimeStamped other) { 1318 return this.isEqualTo(other) || this.isAfter(other); 1319 } 1320 1321 /** Check if the instance represents a time that is strictly between two others representing 1322 * the boundaries of a time span. The two boundaries can be provided in any order: in other words, 1323 * whether <code>boundary</code> represents a time that is before or after <code>otherBoundary</code> will 1324 * not change the result of this method. 1325 * @param boundary one end of the time span 1326 * @param otherBoundary the other end of the time span 1327 * @return true if the instance is strictly between the two arguments when ordering chronologically 1328 * @see #isBetweenOrEqualTo(TimeStamped, TimeStamped) 1329 * @since 10.1 1330 */ 1331 public boolean isBetween(final TimeStamped boundary, final TimeStamped otherBoundary) { 1332 final TimeStamped beginning; 1333 final TimeStamped end; 1334 if (boundary.getDate().isBefore(otherBoundary)) { 1335 beginning = boundary; 1336 end = otherBoundary; 1337 } else { 1338 beginning = otherBoundary; 1339 end = boundary; 1340 } 1341 return this.isAfter(beginning) && this.isBefore(end); 1342 } 1343 1344 /** Check if the instance represents a time that is between two others representing 1345 * the boundaries of a time span, or equal to one of them. The two boundaries can be provided in any order: 1346 * in other words, whether <code>boundary</code> represents a time that is before or after 1347 * <code>otherBoundary</code> will not change the result of this method. 1348 * @param boundary one end of the time span 1349 * @param otherBoundary the other end of the time span 1350 * @return true if the instance is between the two arguments (or equal to at least one of them) 1351 * when ordering chronologically 1352 * @see #isBetween(TimeStamped, TimeStamped) 1353 * @since 10.1 1354 */ 1355 public boolean isBetweenOrEqualTo(final TimeStamped boundary, final TimeStamped otherBoundary) { 1356 return this.isEqualTo(boundary) || this.isEqualTo(otherBoundary) || this.isBetween(boundary, otherBoundary); 1357 } 1358 1359 /** 1360 * Get a String representation of the instant location with up to 18 digits of 1361 * precision for the seconds value. 1362 * 1363 * <p> Since this method is used in exception messages and error handling every 1364 * effort is made to return some representation of the instant. If UTC is available 1365 * from the default data context then it is used to format the string in UTC. If not 1366 * then TAI is used. Finally if the prior attempts fail this method falls back to 1367 * converting this class's internal representation to a string. 1368 * 1369 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1370 * 1371 * @return a string representation of the instance, in ISO-8601 format if UTC is 1372 * available from the default data context. 1373 * @see #toString(TimeScale) 1374 * @see #toStringRfc3339(TimeScale) 1375 * @see DateTimeComponents#toString(int, int) 1376 */ 1377 @DefaultDataContext 1378 public String toString() { 1379 // CHECKSTYLE: stop IllegalCatch check 1380 try { 1381 // try to use UTC first at that is likely most familiar to the user. 1382 return toString(DataContext.getDefault().getTimeScales().getUTC()) + "Z"; 1383 } catch (RuntimeException e1) { 1384 // catch OrekitException, OrekitIllegalStateException, etc. 1385 try { 1386 // UTC failed, try to use TAI 1387 return toString(new TAIScale()) + " TAI"; 1388 } catch (RuntimeException e2) { 1389 // catch OrekitException, OrekitIllegalStateException, etc. 1390 // Likely failed to convert to ymdhms. 1391 // Give user some indication of what time it is. 1392 return "(" + this.getSeconds() + "s + " + this.getAttoSeconds() + "as) seconds past epoch"; 1393 } 1394 } 1395 // CHECKSTYLE: resume IllegalCatch check 1396 } 1397 1398 /** 1399 * Get a String representation of the instant location in ISO-8601 format without the 1400 * UTC offset and with up to 16 digits of precision for the seconds value. 1401 * 1402 * @param timeScale time scale to use 1403 * @return a string representation of the instance. 1404 * @see #toStringRfc3339(TimeScale) 1405 * @see DateTimeComponents#toString(int, int) 1406 */ 1407 public String toString(final TimeScale timeScale) { 1408 return getComponents(timeScale).toStringWithoutUtcOffset(); 1409 } 1410 1411 /** Get a String representation of the instant location for a local time. 1412 * 1413 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1414 * 1415 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1416 * negative Westward UTC). 1417 * @return string representation of the instance, 1418 * in ISO-8601 format with milliseconds accuracy 1419 * @since 7.2 1420 * @see #toString(int, TimeScale) 1421 */ 1422 @DefaultDataContext 1423 public String toString(final int minutesFromUTC) { 1424 return toString(minutesFromUTC, 1425 DataContext.getDefault().getTimeScales().getUTC()); 1426 } 1427 1428 /** 1429 * Get a String representation of the instant location for a local time. 1430 * 1431 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1432 * negative Westward UTC). 1433 * @param utc time scale used to compute date and time components. 1434 * @return string representation of the instance, in ISO-8601 format with milliseconds 1435 * accuracy 1436 * @since 10.1 1437 * @see #getComponents(int, TimeScale) 1438 * @see DateTimeComponents#toString(int, int) 1439 */ 1440 public String toString(final int minutesFromUTC, final TimeScale utc) { 1441 final int minuteDuration = utc.minuteDuration(this); 1442 return getComponents(minutesFromUTC, utc).toString(minuteDuration); 1443 } 1444 1445 /** Get a String representation of the instant location for a time zone. 1446 * 1447 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1448 * 1449 * @param timeZone time zone 1450 * @return string representation of the instance, 1451 * in ISO-8601 format with milliseconds accuracy 1452 * @since 7.2 1453 * @see #toString(TimeZone, TimeScale) 1454 */ 1455 @DefaultDataContext 1456 public String toString(final TimeZone timeZone) { 1457 return toString(timeZone, DataContext.getDefault().getTimeScales().getUTC()); 1458 } 1459 1460 /** 1461 * Get a String representation of the instant location for a time zone. 1462 * 1463 * @param timeZone time zone 1464 * @param utc time scale used to compute date and time components. 1465 * @return string representation of the instance, in ISO-8601 format with milliseconds 1466 * accuracy 1467 * @since 10.1 1468 * @see #getComponents(TimeZone, TimeScale) 1469 * @see DateTimeComponents#toString(int, int) 1470 */ 1471 public String toString(final TimeZone timeZone, final TimeScale utc) { 1472 final int minuteDuration = utc.minuteDuration(this); 1473 return getComponents(timeZone, utc).toString(minuteDuration); 1474 } 1475 1476 /** 1477 * Represent the given date as a string according to the format in RFC 3339. RFC3339 1478 * is a restricted subset of ISO 8601 with a well defined grammar. Enough digits are 1479 * included in the seconds value to avoid rounding up to the next minute. 1480 * 1481 * <p>This method is different than {@link AbsoluteDate#toString(TimeScale)} in that 1482 * it includes a {@code "Z"} at the end to indicate the time zone and enough precision 1483 * to represent the point in time without rounding up to the next minute. 1484 * 1485 * <p>RFC3339 is unable to represent BC years, years of 10000 or more, time zone 1486 * offsets of 100 hours or more, or NaN. In these cases the value returned from this 1487 * method will not be valid RFC3339 format. 1488 * 1489 * @param utc time scale. 1490 * @return RFC 3339 format string. 1491 * @see <a href="https://tools.ietf.org/html/rfc3339#page-8">RFC 3339</a> 1492 * @see DateTimeComponents#toStringRfc3339() 1493 * @see #toString(TimeScale) 1494 * @see #getComponents(TimeScale) 1495 */ 1496 public String toStringRfc3339(final TimeScale utc) { 1497 return this.getComponents(utc).toStringRfc3339(); 1498 } 1499 1500 /** 1501 * Return a string representation of this date-time, rounded to the given precision. 1502 * 1503 * <p>The format used is ISO8601 without the UTC offset.</p> 1504 * 1505 * <p>Calling {@code toStringWithoutUtcOffset(DataContext.getDefault().getTimeScales().getUTC(), 1506 * 3)} will emulate the behavior of {@link #toString()} in Orekit 10 and earlier. Note 1507 * this method is more accurate as it correctly handles rounding during leap seconds. 1508 * 1509 * @param timeScale to use to compute components. 1510 * @param fractionDigits the number of digits to include after the decimal point in 1511 * the string representation of the seconds. The date and time 1512 * is first rounded as necessary. {@code fractionDigits} must be 1513 * greater than or equal to {@code 0}. 1514 * @return string representation of this date, time, and UTC offset 1515 * @see #toString(TimeScale) 1516 * @see #toStringRfc3339(TimeScale) 1517 * @see DateTimeComponents#toString(int, int) 1518 * @see DateTimeComponents#toStringWithoutUtcOffset(int, int) 1519 * @since 11.1 1520 */ 1521 public String toStringWithoutUtcOffset(final TimeScale timeScale, 1522 final int fractionDigits) { 1523 return this.getComponents(timeScale) 1524 .toStringWithoutUtcOffset(timeScale.minuteDuration(this), fractionDigits); 1525 } 1526 1527 /** 1528 * Return the given date as a Modified Julian Date <b>expressed in UTC</b>. 1529 * 1530 * @return double representation of the given date as Modified Julian Date. 1531 * 1532 * @since 12.2 1533 */ 1534 @DefaultDataContext 1535 public double getMJD() { 1536 return this.getJD() - DateComponents.JD_TO_MJD; 1537 } 1538 1539 /** 1540 * Return the given date as a Modified Julian Date expressed in given timescale. 1541 * 1542 * @param ts time scale 1543 * 1544 * @return double representation of the given date as Modified Julian Date. 1545 * 1546 * @since 12.2 1547 */ 1548 public double getMJD(final TimeScale ts) { 1549 return this.getJD(ts) - DateComponents.JD_TO_MJD; 1550 } 1551 1552 /** 1553 * Return the given date as a Julian Date <b>expressed in UTC</b>. 1554 * 1555 * @return double representation of the given date as Julian Date. 1556 * 1557 * @since 12.2 1558 */ 1559 @DefaultDataContext 1560 public double getJD() { 1561 return getJD(TimeScalesFactory.getUTC()); 1562 } 1563 1564 /** 1565 * Return the given date as a Julian Date expressed in given timescale. 1566 * 1567 * @param ts time scale 1568 * 1569 * @return double representation of the given date as Julian Date. 1570 * 1571 * @since 12.2 1572 */ 1573 public double getJD(final TimeScale ts) { 1574 return this.getComponents(ts).offsetFrom(DateTimeComponents.JULIAN_EPOCH) / Constants.JULIAN_DAY; 1575 } 1576 1577 /** Get day of year, preserving continuity as much as possible. 1578 * <p> 1579 * This is a continuous extension of the integer value returned by 1580 * {@link #getComponents(TimeZone) getComponents(utc)}{@link DateTimeComponents#getDate() .getDate()}{@link DateComponents#getDayOfYear() .getDayOfYear()}. 1581 * In order to have it remain as close as possible to its integer counterpart, 1582 * day 1.0 is considered to occur on January 1st at noon. 1583 * </p> 1584 * <p> 1585 * Continuity is preserved from day to day within a year, but of course 1586 * there is a discontinuity at year change, where it switches from 365.49999… 1587 * (or 366.49999… on leap years) to 0.5 1588 * </p> 1589 * @param utc time scale to compute date components 1590 * @return day of year, with day 1.0 occurring on January first at noon 1591 * @since 13.0 1592 */ 1593 public double getDayOfYear(final TimeScale utc) { 1594 final int year = getComponents(utc).getDate().getYear(); 1595 final AbsoluteDate newYearsEve = new AbsoluteDate(year - 1, 12, 31, 12, 0, 0.0, utc); 1596 return durationFrom(newYearsEve) / Constants.JULIAN_DAY; 1597 } 1598 1599 }