1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.orbits;
18
19 import org.hipparchus.geometry.euclidean.threed.Vector3D;
20 import org.hipparchus.linear.DecompositionSolver;
21 import org.hipparchus.linear.MatrixUtils;
22 import org.hipparchus.linear.QRDecomposition;
23 import org.hipparchus.linear.RealMatrix;
24 import org.hipparchus.linear.RealVector;
25 import org.hipparchus.util.FastMath;
26 import org.hipparchus.util.MathArrays;
27 import org.orekit.errors.OrekitIllegalArgumentException;
28 import org.orekit.errors.OrekitInternalError;
29 import org.orekit.errors.OrekitMessages;
30 import org.orekit.frames.Frame;
31 import org.orekit.frames.StaticTransform;
32 import org.orekit.frames.Transform;
33 import org.orekit.time.AbsoluteDate;
34 import org.orekit.time.TimeOffset;
35 import org.orekit.time.TimeShiftable;
36 import org.orekit.time.TimeStamped;
37 import org.orekit.utils.PVCoordinates;
38 import org.orekit.utils.PVCoordinatesProvider;
39 import org.orekit.utils.TimeStampedPVCoordinates;
40
41 /**
42 * This class handles orbital parameters.
43
44 * <p>
45 * For user convenience, both the Cartesian and the equinoctial elements
46 * are provided by this class, regardless of the canonical representation
47 * implemented in the derived class (which may be classical Keplerian
48 * elements for example).
49 * </p>
50 * <p>
51 * The parameters are defined in a frame specified by the user. It is important
52 * to make sure this frame is consistent: it probably is inertial and centered
53 * on the central body. This information is used for example by some
54 * force models.
55 * </p>
56 * <p>
57 * Instance of this class are guaranteed to be immutable.
58 * </p>
59 * @author Luc Maisonobe
60 * @author Guylaine Prat
61 * @author Fabien Maussion
62 * @author Véronique Pommier-Maurussane
63 */
64 public abstract class Orbit
65 implements TimeStamped, TimeShiftable<Orbit>, PVCoordinatesProvider {
66
67 /** Absolute tolerance when checking if the rate of the position angle is Keplerian or not. */
68 protected static final double TOLERANCE_POSITION_ANGLE_RATE = 1e-15;
69
70 /** Frame in which are defined the orbital parameters. */
71 private final Frame frame;
72
73 /** Date of the orbital parameters. */
74 private final AbsoluteDate date;
75
76 /** Value of mu used to compute position and velocity (m³/s²). */
77 private final double mu;
78
79 /** Computed position.
80 * @since 12.0
81 */
82 private Vector3D position;
83
84 /** Computed PVCoordinates. */
85 private TimeStampedPVCoordinates pvCoordinates;
86
87 /** Jacobian of the orbital parameters with mean angle with respect to the Cartesian coordinates. */
88 private double[][] jacobianMeanWrtCartesian;
89
90 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with mean angle. */
91 private double[][] jacobianWrtParametersMean;
92
93 /** Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian coordinates. */
94 private double[][] jacobianEccentricWrtCartesian;
95
96 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with eccentric angle. */
97 private double[][] jacobianWrtParametersEccentric;
98
99 /** Jacobian of the orbital parameters with true angle with respect to the Cartesian coordinates. */
100 private double[][] jacobianTrueWrtCartesian;
101
102 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with true angle. */
103 private double[][] jacobianWrtParametersTrue;
104
105 /** Default constructor.
106 * Build a new instance with arbitrary default elements.
107 * @param frame the frame in which the parameters are defined
108 * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
109 * @param date date of the orbital parameters
110 * @param mu central attraction coefficient (m^3/s^2)
111 * @exception IllegalArgumentException if frame is not a {@link
112 * Frame#isPseudoInertial pseudo-inertial frame}
113 */
114 protected Orbit(final Frame frame, final AbsoluteDate date, final double mu)
115 throws IllegalArgumentException {
116 ensurePseudoInertialFrame(frame);
117 this.date = date;
118 this.mu = mu;
119 this.pvCoordinates = null;
120 this.frame = frame;
121 jacobianMeanWrtCartesian = null;
122 jacobianWrtParametersMean = null;
123 jacobianEccentricWrtCartesian = null;
124 jacobianWrtParametersEccentric = null;
125 jacobianTrueWrtCartesian = null;
126 jacobianWrtParametersTrue = null;
127 }
128
129 /** Set the orbit from Cartesian parameters.
130 *
131 * <p> The acceleration provided in {@code pvCoordinates} is accessible using
132 * {@link #getPVCoordinates()} and {@link #getPVCoordinates(Frame)}. All other methods
133 * use {@code mu} and the position to compute the acceleration, including
134 * {@link #shiftedBy(double)} and {@link #getPVCoordinates(AbsoluteDate, Frame)}.
135 *
136 * @param pvCoordinates the position and velocity in the inertial frame
137 * @param frame the frame in which the {@link TimeStampedPVCoordinates} are defined
138 * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
139 * @param mu central attraction coefficient (m^3/s^2)
140 * @exception IllegalArgumentException if frame is not a {@link
141 * Frame#isPseudoInertial pseudo-inertial frame}
142 */
143 protected Orbit(final TimeStampedPVCoordinates pvCoordinates, final Frame frame, final double mu)
144 throws IllegalArgumentException {
145 ensurePseudoInertialFrame(frame);
146 this.date = pvCoordinates.getDate();
147 this.mu = mu;
148 if (pvCoordinates.getAcceleration().getNormSq() == 0) {
149 // the acceleration was not provided,
150 // compute it from Newtonian attraction
151 final double r2 = pvCoordinates.getPosition().getNormSq();
152 final double r3 = r2 * FastMath.sqrt(r2);
153 this.pvCoordinates = new TimeStampedPVCoordinates(pvCoordinates.getDate(),
154 pvCoordinates.getPosition(),
155 pvCoordinates.getVelocity(),
156 new Vector3D(-mu / r3, pvCoordinates.getPosition()));
157 } else {
158 this.pvCoordinates = pvCoordinates;
159 }
160 this.frame = frame;
161 }
162
163 /** Compute non-Keplerian part of the acceleration from first time derivatives.
164 * @return non-Keplerian part of the acceleration
165 * @since 13.1
166 */
167 protected Vector3D nonKeplerianAcceleration() {
168
169 final double[][] dPdC = new double[6][6];
170 final PositionAngleType positionAngleType = PositionAngleType.MEAN;
171 getJacobianWrtCartesian(positionAngleType, dPdC);
172 final RealMatrix subMatrix = MatrixUtils.createRealMatrix(dPdC);
173
174 final DecompositionSolver solver = getDecompositionSolver(subMatrix);
175
176 final double[] derivatives = new double[6];
177 getType().mapOrbitToArray(this, positionAngleType, new double[6], derivatives);
178 derivatives[5] -= getKeplerianMeanMotion();
179
180 final RealVector solution = solver.solve(MatrixUtils.createRealVector(derivatives));
181 return new Vector3D(solution.getEntry(3), solution.getEntry(4), solution.getEntry(5));
182
183 }
184
185 /** Check if Cartesian coordinates include non-Keplerian acceleration.
186 * @param pva Cartesian coordinates
187 * @param mu central attraction coefficient
188 * @return true if Cartesian coordinates include non-Keplerian acceleration
189 */
190 protected static boolean hasNonKeplerianAcceleration(final PVCoordinates pva, final double mu) {
191
192 final Vector3D a = pva.getAcceleration();
193 if (a == null) {
194 return false;
195 }
196
197 final Vector3D p = pva.getPosition();
198 final double r2 = p.getNormSq();
199
200 // Check if acceleration is relatively close to 0 compared to the Keplerian acceleration
201 final double tolerance = mu * 1e-9;
202 final Vector3D aTimesR2 = a.scalarMultiply(r2);
203 if (aTimesR2.getNorm() < tolerance) {
204 return false;
205 }
206
207 if ((aTimesR2.add(p.normalize().scalarMultiply(mu))).getNorm() > tolerance) {
208 // we have a relevant acceleration, we can compute derivatives
209 return true;
210 } else {
211 // the provided acceleration is either too small to be reliable (probably even 0), or NaN
212 return false;
213 }
214 }
215
216 /** Returns true if and only if the orbit is elliptical i.e. has a non-negative semi-major axis.
217 * @return true if getA() is strictly greater than 0
218 * @since 12.0
219 */
220 public boolean isElliptical() {
221 return getA() > 0.;
222 }
223
224 /** Get the orbit type.
225 * @return orbit type
226 */
227 public abstract OrbitType getType();
228
229 /** Ensure the defining frame is a pseudo-inertial frame.
230 * @param frame frame to check
231 * @exception IllegalArgumentException if frame is not a {@link
232 * Frame#isPseudoInertial pseudo-inertial frame}
233 */
234 private static void ensurePseudoInertialFrame(final Frame frame)
235 throws IllegalArgumentException {
236 if (!frame.isPseudoInertial()) {
237 throw new OrekitIllegalArgumentException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
238 frame.getName());
239 }
240 }
241
242 /** Get the frame in which the orbital parameters are defined.
243 * @return frame in which the orbital parameters are defined
244 */
245 public Frame getFrame() {
246 return frame;
247 }
248
249 /** Get the semi-major axis.
250 * <p>Note that the semi-major axis is considered negative for hyperbolic orbits.</p>
251 * @return semi-major axis (m)
252 */
253 public abstract double getA();
254
255 /** Get the semi-major axis derivative.
256 * <p>Note that the semi-major axis is considered negative for hyperbolic orbits.</p>
257 * <p>
258 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
259 * </p>
260 * @return semi-major axis derivative (m/s)
261 * @since 9.0
262 */
263 public abstract double getADot();
264
265 /** Get the first component of the equinoctial eccentricity vector.
266 * @return first component of the equinoctial eccentricity vector
267 */
268 public abstract double getEquinoctialEx();
269
270 /** Get the first component of the equinoctial eccentricity vector derivative.
271 * <p>
272 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
273 * </p>
274 * @return first component of the equinoctial eccentricity vector derivative
275 * @since 9.0
276 */
277 public abstract double getEquinoctialExDot();
278
279 /** Get the second component of the equinoctial eccentricity vector.
280 * @return second component of the equinoctial eccentricity vector
281 */
282 public abstract double getEquinoctialEy();
283
284 /** Get the second component of the equinoctial eccentricity vector derivative.
285 * <p>
286 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
287 * </p>
288 * @return second component of the equinoctial eccentricity vector derivative
289 * @since 9.0
290 */
291 public abstract double getEquinoctialEyDot();
292
293 /** Get the first component of the inclination vector.
294 * @return first component of the inclination vector
295 */
296 public abstract double getHx();
297
298 /** Get the first component of the inclination vector derivative.
299 * <p>
300 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
301 * </p>
302 * @return first component of the inclination vector derivative
303
304 * @since 9.0
305 */
306 public abstract double getHxDot();
307
308 /** Get the second component of the inclination vector.
309 * @return second component of the inclination vector
310 */
311 public abstract double getHy();
312
313 /** Get the second component of the inclination vector derivative.
314 * <p>
315 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
316 * </p>
317 * @return second component of the inclination vector derivative
318 * @since 9.0
319 */
320 public abstract double getHyDot();
321
322 /** Get the eccentric longitude argument.
323 * @return E + ω + Ω eccentric longitude argument (rad)
324 */
325 public abstract double getLE();
326
327 /** Get the eccentric longitude argument derivative.
328 * <p>
329 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
330 * </p>
331 * @return d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
332 * @since 9.0
333 */
334 public abstract double getLEDot();
335
336 /** Get the true longitude argument.
337 * @return v + ω + Ω true longitude argument (rad)
338 */
339 public abstract double getLv();
340
341 /** Get the true longitude argument derivative.
342 * <p>
343 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
344 * </p>
345 * @return d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
346 * @since 9.0
347 */
348 public abstract double getLvDot();
349
350 /** Get the mean longitude argument.
351 * @return M + ω + Ω mean longitude argument (rad)
352 */
353 public abstract double getLM();
354
355 /** Get the mean longitude argument derivative.
356 * <p>
357 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
358 * </p>
359 * @return d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
360 * @since 9.0
361 */
362 public abstract double getLMDot();
363
364 // Additional orbital elements
365
366 /** Get the eccentricity.
367 * @return eccentricity
368 */
369 public abstract double getE();
370
371 /** Get the eccentricity derivative.
372 * <p>
373 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
374 * </p>
375 * @return eccentricity derivative
376 * @since 9.0
377 */
378 public abstract double getEDot();
379
380 /** Get the inclination.
381 * @return inclination (rad)
382 */
383 public abstract double getI();
384
385 /** Get the inclination derivative.
386 * <p>
387 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
388 * </p>
389 * @return inclination derivative (rad/s)
390 * @since 9.0
391 */
392 public abstract double getIDot();
393
394 /** Check if orbit includes non-Keplerian rates.
395 * @return true if orbit includes non-Keplerian derivatives
396 * @see #getADot()
397 * @see #getEquinoctialExDot()
398 * @see #getEquinoctialEyDot()
399 * @see #getHxDot()
400 * @see #getHyDot()
401 * @see #getLEDot()
402 * @see #getLvDot()
403 * @see #getLMDot()
404 * @see #getEDot()
405 * @see #getIDot()
406 * @since 13.0
407 */
408 public boolean hasNonKeplerianAcceleration() {
409 return hasNonKeplerianAcceleration(getPVCoordinates(), getMu());
410 }
411
412 /** Get the central acceleration constant.
413 * @return central acceleration constant
414 */
415 public double getMu() {
416 return mu;
417 }
418
419 /** Get the Keplerian period.
420 * <p>The Keplerian period is computed directly from semi major axis
421 * and central acceleration constant.</p>
422 * @return Keplerian period in seconds, or positive infinity for hyperbolic orbits
423 */
424 public double getKeplerianPeriod() {
425 final double a = getA();
426 return isElliptical() ? 2.0 * FastMath.PI * a * FastMath.sqrt(a / mu) : Double.POSITIVE_INFINITY;
427 }
428
429 /** Get the Keplerian mean motion.
430 * <p>The Keplerian mean motion is computed directly from semi major axis
431 * and central acceleration constant.</p>
432 * @return Keplerian mean motion in radians per second
433 */
434 public double getKeplerianMeanMotion() {
435 final double absA = FastMath.abs(getA());
436 return FastMath.sqrt(mu / absA) / absA;
437 }
438
439 /** Get the derivative of the mean anomaly with respect to the semi major axis.
440 * @return derivative of the mean anomaly with respect to the semi major axis
441 */
442 public double getMeanAnomalyDotWrtA() {
443 return -1.5 * getKeplerianMeanMotion() / getA();
444 }
445
446 /** Get the date of orbital parameters.
447 * @return date of the orbital parameters
448 */
449 public AbsoluteDate getDate() {
450 return date;
451 }
452
453 /** Get the {@link TimeStampedPVCoordinates} in a specified frame.
454 * @param outputFrame frame in which the position/velocity coordinates shall be computed
455 * @return pvCoordinates in the specified output frame
456 * @see #getPVCoordinates()
457 */
458 public TimeStampedPVCoordinates getPVCoordinates(final Frame outputFrame) {
459 if (pvCoordinates == null) {
460 pvCoordinates = initPVCoordinates();
461 }
462
463 // If output frame requested is the same as definition frame,
464 // PV coordinates are returned directly
465 if (outputFrame == frame) {
466 return pvCoordinates;
467 }
468
469 // Else, PV coordinates are transformed to output frame
470 final Transform t = frame.getTransformTo(outputFrame, date);
471 return t.transformPVCoordinates(pvCoordinates);
472 }
473
474 /** {@inheritDoc} */
475 public TimeStampedPVCoordinates getPVCoordinates(final AbsoluteDate otherDate, final Frame otherFrame) {
476 return shiftedBy(otherDate.durationFrom(getDate())).getPVCoordinates(otherFrame);
477 }
478
479 /** {@inheritDoc} */
480 @Override
481 public Vector3D getPosition(final AbsoluteDate otherDate, final Frame otherFrame) {
482 return shiftedBy(otherDate.durationFrom(getDate())).getPosition(otherFrame);
483 }
484
485 /** Get the position in a specified frame.
486 * @param outputFrame frame in which the position coordinates shall be computed
487 * @return position in the specified output frame
488 * @see #getPosition()
489 * @since 12.0
490 */
491 public Vector3D getPosition(final Frame outputFrame) {
492 if (position == null) {
493 position = initPosition();
494 }
495
496 // If output frame requested is the same as definition frame,
497 // Position vector is returned directly
498 if (outputFrame == frame) {
499 return position;
500 }
501
502 // Else, position vector is transformed to output frame
503 final StaticTransform t = frame.getStaticTransformTo(outputFrame, date);
504 return t.transformPosition(position);
505
506 }
507
508 /** Get the position in definition frame.
509 * @return position in the definition frame
510 * @see #getPVCoordinates()
511 * @since 12.0
512 */
513 public Vector3D getPosition() {
514 if (position == null) {
515 position = initPosition();
516 }
517 return position;
518 }
519
520 /** Get the velocity in definition frame.
521 * @return velocity in the definition frame
522 * @see #getPVCoordinates()
523 * @since 13.1
524 */
525 public Vector3D getVelocity() {
526 return getPVCoordinates().getVelocity();
527 }
528
529 /** Get the {@link TimeStampedPVCoordinates} in definition frame.
530 * @return pvCoordinates in the definition frame
531 * @see #getPVCoordinates(Frame)
532 */
533 public TimeStampedPVCoordinates getPVCoordinates() {
534 if (pvCoordinates == null) {
535 pvCoordinates = initPVCoordinates();
536 position = pvCoordinates.getPosition();
537 }
538 return pvCoordinates;
539 }
540
541 /** Compute the position coordinates from the canonical parameters.
542 * @return computed position coordinates
543 * @since 12.0
544 */
545 protected abstract Vector3D initPosition();
546
547 /** Compute the position/velocity coordinates from the canonical parameters.
548 * @return computed position/velocity coordinates
549 */
550 protected abstract TimeStampedPVCoordinates initPVCoordinates();
551
552 /**
553 * Create a new object representing the same physical orbital state, but attached to a different reference frame.
554 * If the new frame is not inertial, an exception will be thrown.
555 *
556 * @param inertialFrame reference frame of output orbit
557 * @return orbit with different frame
558 * @since 13.0
559 */
560 public abstract Orbit inFrame(Frame inertialFrame);
561
562 /** Get a time-shifted orbit.
563 * <p>
564 * The orbit can be slightly shifted to close dates. The shifting model is a
565 * Keplerian one if no derivatives are available in the orbit, or Keplerian
566 * plus quadratic effect of the non-Keplerian acceleration if derivatives are
567 * available. Shifting is <em>not</em> intended as a replacement for proper
568 * orbit propagation but should be sufficient for small time shifts or coarse
569 * accuracy.
570 * </p>
571 * @param dt time shift in seconds
572 * @return a new orbit, shifted with respect to the instance (which is immutable)
573 */
574 @Override
575 public abstract Orbit shiftedBy(double dt);
576
577 /** Get a time-shifted orbit.
578 * <p>
579 * The orbit can be slightly shifted to close dates. The shifting model is a
580 * Keplerian one if no derivatives are available in the orbit, or Keplerian
581 * plus quadratic effect of the non-Keplerian acceleration if derivatives are
582 * available. Shifting is <em>not</em> intended as a replacement for proper
583 * orbit propagation but should be sufficient for small time shifts or coarse
584 * accuracy.
585 * </p>
586 * @param dt time shift
587 * @return a new orbit, shifted with respect to the instance (which is immutable)
588 */
589 @Override
590 public abstract Orbit shiftedBy(TimeOffset dt);
591
592 /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
593 * <p>
594 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
595 * respect to Cartesian coordinate j. This means each row corresponds to one orbital parameter
596 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
597 * </p>
598 * @param type type of the position angle to use
599 * @param jacobian placeholder 6x6 (or larger) matrix to be filled with the Jacobian, if matrix
600 * is larger than 6x6, only the 6x6 upper left corner will be modified
601 */
602 public void getJacobianWrtCartesian(final PositionAngleType type, final double[][] jacobian) {
603
604 final double[][] cachedJacobian;
605 synchronized (this) {
606 switch (type) {
607 case MEAN :
608 if (jacobianMeanWrtCartesian == null) {
609 // first call, we need to compute the Jacobian and cache it
610 jacobianMeanWrtCartesian = computeJacobianMeanWrtCartesian();
611 }
612 cachedJacobian = jacobianMeanWrtCartesian;
613 break;
614 case ECCENTRIC :
615 if (jacobianEccentricWrtCartesian == null) {
616 // first call, we need to compute the Jacobian and cache it
617 jacobianEccentricWrtCartesian = computeJacobianEccentricWrtCartesian();
618 }
619 cachedJacobian = jacobianEccentricWrtCartesian;
620 break;
621 case TRUE :
622 if (jacobianTrueWrtCartesian == null) {
623 // first call, we need to compute the Jacobian and cache it
624 jacobianTrueWrtCartesian = computeJacobianTrueWrtCartesian();
625 }
626 cachedJacobian = jacobianTrueWrtCartesian;
627 break;
628 default :
629 throw new OrekitInternalError(null);
630 }
631 }
632
633 // fill the user provided array
634 for (int i = 0; i < cachedJacobian.length; ++i) {
635 System.arraycopy(cachedJacobian[i], 0, jacobian[i], 0, cachedJacobian[i].length);
636 }
637
638 }
639
640 /** Compute the Jacobian of the Cartesian parameters with respect to the orbital parameters.
641 * <p>
642 * Element {@code jacobian[i][j]} is the derivative of Cartesian coordinate i of the orbit with
643 * respect to orbital parameter j. This means each row corresponds to one Cartesian coordinate
644 * x, y, z, xdot, ydot, zdot whereas columns 0 to 5 correspond to the orbital parameters.
645 * </p>
646 * @param type type of the position angle to use
647 * @param jacobian placeholder 6x6 (or larger) matrix to be filled with the Jacobian, if matrix
648 * is larger than 6x6, only the 6x6 upper left corner will be modified
649 */
650 public void getJacobianWrtParameters(final PositionAngleType type, final double[][] jacobian) {
651
652 final double[][] cachedJacobian;
653 synchronized (this) {
654 switch (type) {
655 case MEAN :
656 if (jacobianWrtParametersMean == null) {
657 // first call, we need to compute the Jacobian and cache it
658 jacobianWrtParametersMean = createInverseJacobian(type);
659 }
660 cachedJacobian = jacobianWrtParametersMean;
661 break;
662 case ECCENTRIC :
663 if (jacobianWrtParametersEccentric == null) {
664 // first call, we need to compute the Jacobian and cache it
665 jacobianWrtParametersEccentric = createInverseJacobian(type);
666 }
667 cachedJacobian = jacobianWrtParametersEccentric;
668 break;
669 case TRUE :
670 if (jacobianWrtParametersTrue == null) {
671 // first call, we need to compute the Jacobian and cache it
672 jacobianWrtParametersTrue = createInverseJacobian(type);
673 }
674 cachedJacobian = jacobianWrtParametersTrue;
675 break;
676 default :
677 throw new OrekitInternalError(null);
678 }
679 }
680
681 // fill the user-provided array
682 for (int i = 0; i < cachedJacobian.length; ++i) {
683 System.arraycopy(cachedJacobian[i], 0, jacobian[i], 0, cachedJacobian[i].length);
684 }
685
686 }
687
688 /** Create an inverse Jacobian.
689 * @param type type of the position angle to use
690 * @return inverse Jacobian
691 */
692 private double[][] createInverseJacobian(final PositionAngleType type) {
693
694 // get the direct Jacobian
695 final double[][] directJacobian = new double[6][6];
696 getJacobianWrtCartesian(type, directJacobian);
697
698 // invert the direct Jacobian
699 final RealMatrix matrix = MatrixUtils.createRealMatrix(directJacobian);
700 final DecompositionSolver solver = getDecompositionSolver(matrix);
701 return solver.getInverse().getData();
702
703 }
704
705 /**
706 * Method to build a matrix decomposition solver.
707 * @param realMatrix matrix
708 * @return solver
709 * @since 13.1
710 */
711 protected DecompositionSolver getDecompositionSolver(final RealMatrix realMatrix) {
712 return new QRDecomposition(realMatrix).getSolver();
713 }
714
715 /** Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
716 * <p>
717 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
718 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
719 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
720 * </p>
721 * <p>
722 * The array returned by this method will not be modified.
723 * </p>
724 * @return 6x6 Jacobian matrix
725 * @see #computeJacobianEccentricWrtCartesian()
726 * @see #computeJacobianTrueWrtCartesian()
727 */
728 protected abstract double[][] computeJacobianMeanWrtCartesian();
729
730 /** Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
731 * <p>
732 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
733 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
734 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
735 * </p>
736 * <p>
737 * The array returned by this method will not be modified.
738 * </p>
739 * @return 6x6 Jacobian matrix
740 * @see #computeJacobianMeanWrtCartesian()
741 * @see #computeJacobianTrueWrtCartesian()
742 */
743 protected abstract double[][] computeJacobianEccentricWrtCartesian();
744
745 /** Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
746 * <p>
747 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
748 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
749 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
750 * </p>
751 * <p>
752 * The array returned by this method will not be modified.
753 * </p>
754 * @return 6x6 Jacobian matrix
755 * @see #computeJacobianMeanWrtCartesian()
756 * @see #computeJacobianEccentricWrtCartesian()
757 */
758 protected abstract double[][] computeJacobianTrueWrtCartesian();
759
760 /** Add the contribution of the Keplerian motion to parameters derivatives
761 * <p>
762 * This method is used by integration-based propagators to evaluate the part of Keplerian
763 * motion to evolution of the orbital state.
764 * </p>
765 * @param type type of the position angle in the state
766 * @param gm attraction coefficient to use
767 * @param pDot array containing orbital state derivatives to update (the Keplerian
768 * part must be <em>added</em> to the array components, as the array may already
769 * contain some non-zero elements corresponding to non-Keplerian parts)
770 */
771 public abstract void addKeplerContribution(PositionAngleType type, double gm, double[] pDot);
772
773 /** Fill a Jacobian half row with a single vector.
774 * @param a coefficient of the vector
775 * @param v vector
776 * @param row Jacobian matrix row
777 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
778 */
779 protected static void fillHalfRow(final double a, final Vector3D v, final double[] row, final int j) {
780 row[j] = a * v.getX();
781 row[j + 1] = a * v.getY();
782 row[j + 2] = a * v.getZ();
783 }
784
785 /** Fill a Jacobian half row with a linear combination of vectors.
786 * @param a1 coefficient of the first vector
787 * @param v1 first vector
788 * @param a2 coefficient of the second vector
789 * @param v2 second vector
790 * @param row Jacobian matrix row
791 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
792 */
793 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
794 final double[] row, final int j) {
795 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX());
796 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY());
797 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ());
798 }
799
800 /** Fill a Jacobian half row with a linear combination of vectors.
801 * @param a1 coefficient of the first vector
802 * @param v1 first vector
803 * @param a2 coefficient of the second vector
804 * @param v2 second vector
805 * @param a3 coefficient of the third vector
806 * @param v3 third vector
807 * @param row Jacobian matrix row
808 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
809 */
810 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
811 final double a3, final Vector3D v3,
812 final double[] row, final int j) {
813 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX(), a3, v3.getX());
814 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY(), a3, v3.getY());
815 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ(), a3, v3.getZ());
816 }
817
818 /** Fill a Jacobian half row with a linear combination of vectors.
819 * @param a1 coefficient of the first vector
820 * @param v1 first vector
821 * @param a2 coefficient of the second vector
822 * @param v2 second vector
823 * @param a3 coefficient of the third vector
824 * @param v3 third vector
825 * @param a4 coefficient of the fourth vector
826 * @param v4 fourth vector
827 * @param row Jacobian matrix row
828 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
829 */
830 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
831 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
832 final double[] row, final int j) {
833 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX(), a3, v3.getX(), a4, v4.getX());
834 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY(), a3, v3.getY(), a4, v4.getY());
835 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ(), a3, v3.getZ(), a4, v4.getZ());
836 }
837
838 /** Fill a Jacobian half row with a linear combination of vectors.
839 * @param a1 coefficient of the first vector
840 * @param v1 first vector
841 * @param a2 coefficient of the second vector
842 * @param v2 second vector
843 * @param a3 coefficient of the third vector
844 * @param v3 third vector
845 * @param a4 coefficient of the fourth vector
846 * @param v4 fourth vector
847 * @param a5 coefficient of the fifth vector
848 * @param v5 fifth vector
849 * @param row Jacobian matrix row
850 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
851 */
852 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
853 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
854 final double a5, final Vector3D v5,
855 final double[] row, final int j) {
856 final double[] a = new double[] {
857 a1, a2, a3, a4, a5
858 };
859 row[j] = MathArrays.linearCombination(a, new double[] {
860 v1.getX(), v2.getX(), v3.getX(), v4.getX(), v5.getX()
861 });
862 row[j + 1] = MathArrays.linearCombination(a, new double[] {
863 v1.getY(), v2.getY(), v3.getY(), v4.getY(), v5.getY()
864 });
865 row[j + 2] = MathArrays.linearCombination(a, new double[] {
866 v1.getZ(), v2.getZ(), v3.getZ(), v4.getZ(), v5.getZ()
867 });
868 }
869
870 /** Fill a Jacobian half row with a linear combination of vectors.
871 * @param a1 coefficient of the first vector
872 * @param v1 first vector
873 * @param a2 coefficient of the second vector
874 * @param v2 second vector
875 * @param a3 coefficient of the third vector
876 * @param v3 third vector
877 * @param a4 coefficient of the fourth vector
878 * @param v4 fourth vector
879 * @param a5 coefficient of the fifth vector
880 * @param v5 fifth vector
881 * @param a6 coefficient of the sixth vector
882 * @param v6 sixth vector
883 * @param row Jacobian matrix row
884 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
885 */
886 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
887 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
888 final double a5, final Vector3D v5, final double a6, final Vector3D v6,
889 final double[] row, final int j) {
890 final double[] a = new double[] {
891 a1, a2, a3, a4, a5, a6
892 };
893 row[j] = MathArrays.linearCombination(a, new double[] {
894 v1.getX(), v2.getX(), v3.getX(), v4.getX(), v5.getX(), v6.getX()
895 });
896 row[j + 1] = MathArrays.linearCombination(a, new double[] {
897 v1.getY(), v2.getY(), v3.getY(), v4.getY(), v5.getY(), v6.getY()
898 });
899 row[j + 2] = MathArrays.linearCombination(a, new double[] {
900 v1.getZ(), v2.getZ(), v3.getZ(), v4.getZ(), v5.getZ(), v6.getZ()
901 });
902 }
903
904 }