1   /* Copyright 2002-2016 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.attitudes;
18  
19  import org.hipparchus.geometry.euclidean.threed.Rotation;
20  import org.hipparchus.geometry.euclidean.threed.RotationConvention;
21  import org.hipparchus.geometry.euclidean.threed.RotationOrder;
22  import org.orekit.errors.OrekitException;
23  import org.orekit.errors.OrekitMessages;
24  import org.orekit.frames.Frame;
25  import org.orekit.frames.LOFType;
26  import org.orekit.frames.Transform;
27  import org.orekit.time.AbsoluteDate;
28  import org.orekit.utils.PVCoordinates;
29  import org.orekit.utils.PVCoordinatesProvider;
30  
31  
32  /**
33   * Attitude law defined by fixed Roll, Pitch and Yaw angles (in any order)
34   * with respect to a local orbital frame.
35  
36   * <p>
37   * The attitude provider is defined as a rotation offset from some local orbital frame.
38   * @author V&eacute;ronique Pommier-Maurussane
39   */
40  public class LofOffset implements AttitudeProvider {
41  
42      /** Serializable UID. */
43      private static final long serialVersionUID = -713570668596014285L;
44  
45      /** Type of Local Orbital Frame. */
46      private LOFType type;
47  
48      /** Rotation from local orbital frame.  */
49      private final Rotation offset;
50  
51      /** Inertial frame with respect to which orbit should be computed. */
52      private final Frame inertialFrame;
53  
54      /** Create a LOF-aligned attitude.
55       * <p>
56       * Calling this constructor is equivalent to call
57       * {@code LofOffset(inertialFrame, LOFType, RotationOrder.XYZ, 0, 0, 0)}
58       * </p>
59       * @param inertialFrame inertial frame with respect to which orbit should be computed
60       * @param type type of Local Orbital Frame
61       * @exception OrekitException if inertialFrame is not a pseudo-inertial frame
62       */
63      public LofOffset(final Frame inertialFrame, final LOFType type) throws OrekitException {
64          this(inertialFrame, type, RotationOrder.XYZ, 0, 0, 0);
65      }
66  
67      /** Creates new instance.
68       * <p>
69       * An important thing to note is that the rotation order and angles signs used here
70       * are compliant with an <em>attitude</em> definition, i.e. they correspond to
71       * a frame that rotate in a field of fixed vectors. The underlying definitions used
72       * in Hipparchus {@link org.hipparchus.geometry.euclidean.threed.Rotation#Rotation(RotationOrder,
73       * double, double, double) Rotation(RotationOrder, double, double, double)} use
74       * <em>reversed</em> definition, i.e. they correspond to a vectors field rotating
75       * with respect to a fixed frame. So to retrieve the angles provided here from the
76       * Hipparchus underlying rotation, one has to <em>revert</em> the rotation, as in
77       * the following code snippet:
78       * </p>
79       * <pre>
80       *   LofOffset law          = new LofOffset(inertial, lofType, order, alpha1, alpha2, alpha3);
81       *   Rotation  offsetAtt    = law.getAttitude(orbit).getRotation();
82       *   Rotation  alignedAtt   = new LofOffset(inertial, lofType).getAttitude(orbit).getRotation();
83       *   Rotation  offsetProper = offsetAtt.applyTo(alignedAtt.revert());
84       *
85       *   // note the call to revert in the following statement
86       *   double[] angles = offsetProper.revert().getAngles(order);
87       *
88       *   System.out.println(alpha1 + " == " + angles[0]);
89       *   System.out.println(alpha2 + " == " + angles[1]);
90       *   System.out.println(alpha3 + " == " + angles[2]);
91       * </pre>
92       * @param inertialFrame inertial frame with respect to which orbit should be computed
93       * @param type type of Local Orbital Frame
94       * @param order order of rotations to use for (alpha1, alpha2, alpha3) composition
95       * @param alpha1 angle of the first elementary rotation
96       * @param alpha2 angle of the second elementary rotation
97       * @param alpha3 angle of the third elementary rotation
98       * @exception OrekitException if inertialFrame is not a pseudo-inertial frame
99       */
100     public LofOffset(final Frame inertialFrame, final LOFType type,
101                      final RotationOrder order, final double alpha1,
102                      final double alpha2, final double alpha3) throws OrekitException {
103         this.type = type;
104         this.offset = new Rotation(order, RotationConvention.VECTOR_OPERATOR, alpha1, alpha2, alpha3).revert();
105         if (!inertialFrame.isPseudoInertial()) {
106             throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
107                                       inertialFrame.getName());
108         }
109         this.inertialFrame = inertialFrame;
110     }
111 
112 
113     /** {@inheritDoc} */
114     public Attitude getAttitude(final PVCoordinatesProvider pvProv,
115                                 final AbsoluteDate date, final Frame frame)
116         throws OrekitException {
117 
118         // construction of the local orbital frame, using PV from inertial frame
119         final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
120         final Transform inertialToLof = type.transformFromInertial(date, pv);
121 
122         // take into account the specified start frame (which may not be an inertial one)
123         final Transform frameToInertial = frame.getTransformTo(inertialFrame, date);
124         final Transform frameToLof = new Transform(date, frameToInertial, inertialToLof);
125 
126         // compose with offset rotation
127         return new Attitude(date, frame,
128                             offset.compose(frameToLof.getRotation(), RotationConvention.VECTOR_OPERATOR),
129                             offset.applyTo(frameToLof.getRotationRate()),
130                             offset.applyTo(frameToLof.getRotationAcceleration()));
131 
132     }
133 
134 }