public class KeplerianOrbit extends Orbit
The parameters used internally are the classical keplerian elements:
a
e
i
ω
Ω
v
where ω stands for the Perigee Argument, Ω stands for the
Right Ascension of the Ascending Node and v stands for the true anomaly.
This class supports hyperbolic orbits, using the convention that semi major axis is negative for such orbits (and of course eccentricity is greater than 1).
When orbit is either equatorial or circular, some keplerian elements
(more precisely ω and Ω) become ambiguous so this class should not
be used for such orbits. For this reason, equinoctial
orbits is the recommended way to represent orbits.
The instance KeplerianOrbit is guaranteed to be immutable.
Orbit,
CircularOrbit,
CartesianOrbit,
EquinoctialOrbit,
Serialized Form| Constructor and Description |
|---|
KeplerianOrbit(double a,
double e,
double i,
double pa,
double raan,
double anomaly,
PositionAngle type,
Frame frame,
AbsoluteDate date,
double mu)
Creates a new instance.
|
KeplerianOrbit(Orbit op)
Constructor from any kind of orbital parameters.
|
KeplerianOrbit(PVCoordinates pvCoordinates,
Frame frame,
AbsoluteDate date,
double mu)
Constructor from cartesian parameters.
|
KeplerianOrbit(TimeStampedPVCoordinates pvCoordinates,
Frame frame,
double mu)
Constructor from cartesian parameters.
|
| Modifier and Type | Method and Description |
|---|---|
void |
addKeplerContribution(PositionAngle type,
double gm,
double[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives
|
protected double[][] |
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
double |
getA()
Get the semi-major axis.
|
double |
getAnomaly(PositionAngle type)
Get the anomaly.
|
double |
getE()
Get the eccentricity.
|
double |
getEccentricAnomaly()
Get the eccentric anomaly.
|
double |
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.
|
double |
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.
|
double |
getHx()
Get the first component of the inclination vector.
|
double |
getHy()
Get the second component of the inclination vector.
|
double |
getI()
Get the inclination.
|
double |
getLE()
Get the eccentric longitude argument.
|
double |
getLM()
Get the mean longitude argument.
|
double |
getLv()
Get the true longitude argument.
|
double |
getMeanAnomaly()
Get the mean anomaly.
|
double |
getPerigeeArgument()
Get the perigee argument.
|
double |
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.
|
double |
getTrueAnomaly()
Get the true anomaly.
|
OrbitType |
getType()
Get the orbit type.
|
protected TimeStampedPVCoordinates |
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.
|
KeplerianOrbit |
interpolate(AbsoluteDate date,
Collection<Orbit> sample)
Get an interpolated instance.
|
KeplerianOrbit |
shiftedBy(double dt)
Get a time-shifted orbit.
|
String |
toString()
Returns a string representation of this keplerian parameters object.
|
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinatespublic KeplerianOrbit(double a,
double e,
double i,
double pa,
double raan,
double anomaly,
PositionAngle type,
Frame frame,
AbsoluteDate date,
double mu)
throws IllegalArgumentException
a - semi-major axis (m), negative for hyperbolic orbitse - eccentricityi - inclination (rad)pa - perigee argument (ω, rad)raan - right ascension of ascending node (Ω, rad)anomaly - mean, eccentric or true anomaly (rad)type - type of anomalyframe - the frame in which the parameters are defined
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial frame or a and e don't match for hyperbolic orbits,
or v is out of range for hyperbolic orbitspublic KeplerianOrbit(TimeStampedPVCoordinates pvCoordinates, Frame frame, double mu) throws IllegalArgumentException
The acceleration provided in pvCoordinates is accessible using
Orbit.getPVCoordinates() and Orbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(double) and Orbit.getPVCoordinates(AbsoluteDate, Frame).
pvCoordinates - the PVCoordinates of the satelliteframe - the frame in which are defined the PVCoordinates
(must be a pseudo-inertial frame)mu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic KeplerianOrbit(PVCoordinates pvCoordinates, Frame frame, AbsoluteDate date, double mu) throws IllegalArgumentException
The acceleration provided in pvCoordinates is accessible using
Orbit.getPVCoordinates() and Orbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(double) and Orbit.getPVCoordinates(AbsoluteDate, Frame).
pvCoordinates - the PVCoordinates of the satelliteframe - the frame in which are defined the PVCoordinates
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic KeplerianOrbit(Orbit op)
op - orbital parameters to copypublic OrbitType getType()
public double getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
public double getE()
public double getI()
public double getPerigeeArgument()
public double getRightAscensionOfAscendingNode()
public double getAnomaly(PositionAngle type)
type - type of the anglepublic double getTrueAnomaly()
public double getEccentricAnomaly()
public double getMeanAnomaly()
public double getEquinoctialEx()
getEquinoctialEx in class Orbitpublic double getEquinoctialEy()
getEquinoctialEy in class Orbitpublic double getHx()
public double getHy()
public double getLv()
public double getLE()
public double getLM()
protected TimeStampedPVCoordinates initPVCoordinates()
initPVCoordinates in class Orbitpublic KeplerianOrbit shiftedBy(double dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
shiftedBy in interface TimeShiftable<Orbit>shiftedBy in class Orbitdt - time shift in secondspublic KeplerianOrbit interpolate(AbsoluteDate date, Collection<Orbit> sample)
Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
Note that this method is designed for small samples only (say up to about 10-20 points) so it can be implemented using polynomial interpolation (typically Hermite interpolation). Using too much points may induce Runge's phenomenon and numerical problems (including NaN appearing).
The interpolated instance is created by polynomial Hermite interpolation on Keplerian elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).
As this implementation of interpolation is polynomial, it should be used only with small samples (about 10-20 points) in order to avoid Runge's phenomenon and numerical problems (including NaN appearing).
If orbit interpolation on large samples is needed, using the Ephemeris class is a better way than using this
low-level interpolation. The Ephemeris class automatically handles selection of
a neighboring sub-sample with a predefined number of point from a large global sample
in a thread-safe way.
date - interpolation datesample - sample points on which interpolation should be doneprotected double[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian in class OrbitOrbit.computeJacobianEccentricWrtCartesian(),
Orbit.computeJacobianTrueWrtCartesian()protected double[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian in class OrbitOrbit.computeJacobianMeanWrtCartesian(),
Orbit.computeJacobianTrueWrtCartesian()protected double[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian in class OrbitOrbit.computeJacobianMeanWrtCartesian(),
Orbit.computeJacobianEccentricWrtCartesian()public void addKeplerContribution(PositionAngle type, double gm, double[] pDot)
This method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
addKeplerContribution in class Orbittype - type of the position angle in the stategm - attraction coefficient to usepDot - array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)Copyright © 2002-2016 CS Systèmes d'information. All rights reserved.