1 /* Copyright 2002-2019 CS Systèmes d'Information
2 * Licensed to CS Systèmes d'Information (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.attitudes;
18
19 import org.hipparchus.RealFieldElement;
20 import org.hipparchus.geometry.euclidean.threed.FieldRotation;
21 import org.hipparchus.geometry.euclidean.threed.Rotation;
22 import org.hipparchus.geometry.euclidean.threed.RotationConvention;
23 import org.hipparchus.geometry.euclidean.threed.RotationOrder;
24 import org.orekit.errors.OrekitException;
25 import org.orekit.errors.OrekitMessages;
26 import org.orekit.frames.FieldTransform;
27 import org.orekit.frames.Frame;
28 import org.orekit.frames.LOFType;
29 import org.orekit.frames.Transform;
30 import org.orekit.time.AbsoluteDate;
31 import org.orekit.time.FieldAbsoluteDate;
32 import org.orekit.utils.FieldPVCoordinates;
33 import org.orekit.utils.FieldPVCoordinatesProvider;
34 import org.orekit.utils.PVCoordinates;
35 import org.orekit.utils.PVCoordinatesProvider;
36
37
38 /**
39 * Attitude law defined by fixed Roll, Pitch and Yaw angles (in any order)
40 * with respect to a local orbital frame.
41
42 * <p>
43 * The attitude provider is defined as a rotation offset from some local orbital frame.
44 * @author Véronique Pommier-Maurussane
45 */
46 public class LofOffset implements AttitudeProvider {
47
48 /** Serializable UID. */
49 private static final long serialVersionUID = -713570668596014285L;
50
51 /** Type of Local Orbital Frame. */
52 private LOFType type;
53
54 /** Rotation from local orbital frame. */
55 private final Rotation offset;
56
57 /** Inertial frame with respect to which orbit should be computed. */
58 private final Frame inertialFrame;
59
60 /** Create a LOF-aligned attitude.
61 * <p>
62 * Calling this constructor is equivalent to call
63 * {@code LofOffset(inertialFrame, LOFType, RotationOrder.XYZ, 0, 0, 0)}
64 * </p>
65 * @param inertialFrame inertial frame with respect to which orbit should be computed
66 * @param type type of Local Orbital Frame
67 */
68 public LofOffset(final Frame inertialFrame, final LOFType type) {
69 this(inertialFrame, type, RotationOrder.XYZ, 0, 0, 0);
70 }
71
72 /** Creates new instance.
73 * <p>
74 * An important thing to note is that the rotation order and angles signs used here
75 * are compliant with an <em>attitude</em> definition, i.e. they correspond to
76 * a frame that rotate in a field of fixed vectors. So to retrieve the angles
77 * provided here from the Hipparchus underlying rotation, one has to either use the
78 * {@link RotationConvention#VECTOR_OPERATOR} and <em>revert</em> the rotation, or
79 * to use {@link RotationConvention#FRAME_TRANSFORM} as in the following code snippet:
80 * </p>
81 * <pre>
82 * LofOffset law = new LofOffset(inertial, lofType, order, alpha1, alpha2, alpha3);
83 * Rotation offsetAtt = law.getAttitude(orbit).getRotation();
84 * Rotation alignedAtt = new LofOffset(inertial, lofType).getAttitude(orbit).getRotation();
85 * Rotation offsetProper = offsetAtt.compose(alignedAtt.revert(), RotationConvention.VECTOR_OPERATOR);
86 *
87 * // note the call to revert and the conventions in the following statement
88 * double[] anglesV = offsetProper.revert().getAngles(order, RotationConvention.VECTOR_OPERATOR);
89 * System.out.println(alpha1 + " == " + anglesV[0]);
90 * System.out.println(alpha2 + " == " + anglesV[1]);
91 * System.out.println(alpha3 + " == " + anglesV[2]);
92 *
93 * // note the conventions in the following statement
94 * double[] anglesF = offsetProper.getAngles(order, RotationConvention.FRAME_TRANSFORM);
95 * System.out.println(alpha1 + " == " + anglesF[0]);
96 * System.out.println(alpha2 + " == " + anglesF[1]);
97 * System.out.println(alpha3 + " == " + anglesF[2]);
98 * </pre>
99 * @param inertialFrame inertial frame with respect to which orbit should be computed
100 * @param type type of Local Orbital Frame
101 * @param order order of rotations to use for (alpha1, alpha2, alpha3) composition
102 * @param alpha1 angle of the first elementary rotation
103 * @param alpha2 angle of the second elementary rotation
104 * @param alpha3 angle of the third elementary rotation
105 */
106 public LofOffset(final Frame inertialFrame, final LOFType type,
107 final RotationOrder order, final double alpha1,
108 final double alpha2, final double alpha3) {
109 this.type = type;
110 this.offset = new Rotation(order, RotationConvention.VECTOR_OPERATOR, alpha1, alpha2, alpha3).revert();
111 if (!inertialFrame.isPseudoInertial()) {
112 throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
113 inertialFrame.getName());
114 }
115 this.inertialFrame = inertialFrame;
116 }
117
118
119 /** {@inheritDoc} */
120 public Attitude getAttitude(final PVCoordinatesProvider pvProv,
121 final AbsoluteDate date, final Frame frame) {
122
123 // construction of the local orbital frame, using PV from inertial frame
124 final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
125 final Transform inertialToLof = type.transformFromInertial(date, pv);
126
127 // take into account the specified start frame (which may not be an inertial one)
128 final Transform frameToInertial = frame.getTransformTo(inertialFrame, date);
129 final Transformform">Transform frameToLof = new Transform(date, frameToInertial, inertialToLof);
130
131 // compose with offset rotation
132 return new Attitude(date, frame,
133 offset.compose(frameToLof.getRotation(), RotationConvention.VECTOR_OPERATOR),
134 offset.applyTo(frameToLof.getRotationRate()),
135 offset.applyTo(frameToLof.getRotationAcceleration()));
136
137 }
138
139 /** {@inheritDoc} */
140 public <T extends RealFieldElement<T>> FieldAttitude<T> getAttitude(final FieldPVCoordinatesProvider<T> pvProv,
141 final FieldAbsoluteDate<T> date,
142 final Frame frame) {
143
144 // construction of the local orbital frame, using PV from inertial frame
145 final FieldPVCoordinates<T> pv = pvProv.getPVCoordinates(date, inertialFrame);
146 final FieldTransform<T> inertialToLof = type.transformFromInertial(date, pv);
147
148 // take into account the specified start frame (which may not be an inertial one)
149 final FieldTransform<T> frameToInertial = frame.getTransformTo(inertialFrame, date);
150 final FieldTransform<T> frameToLof = new FieldTransform<>(date, frameToInertial, inertialToLof);
151
152 // compose with offset rotation
153 return new FieldAttitude<>(date, frame,
154 frameToLof.getRotation().compose(offset, RotationConvention.FRAME_TRANSFORM),
155 FieldRotation.applyTo(offset, frameToLof.getRotationRate()),
156 FieldRotation.applyTo(offset, frameToLof.getRotationAcceleration()));
157
158 }
159 }