1   /* Contributed in the public domain.
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.models.earth;
18  
19  import org.hipparchus.util.FastMath;
20  import org.orekit.bodies.OneAxisEllipsoid;
21  import org.orekit.frames.Frame;
22  import org.orekit.utils.Constants;
23  
24  /**
25   * A Reference Ellipsoid for use in geodesy. The ellipsoid defines an
26   * ellipsoidal potential called the normal potential, and its gradient, normal
27   * gravity.
28   *
29   * <p> These parameters are needed to define the normal potential:
30   *
31   *
32   * <ul> <li>a, semi-major axis</li>
33   *
34   * <li>f, flattening</li>
35   *
36   * <li>GM, the gravitational parameter</li>
37   *
38   * <li>&omega;, the spin rate</li> </ul>
39   *
40   * <p> References:
41   *
42   * <ol> <li>Martin Losch, Verena Seufer. How to Compute Geoid Undulations (Geoid
43   * Height Relative to a Given Reference Ellipsoid) from Spherical Harmonic
44   * Coefficients for Satellite Altimetry Applications. , 2003. <a
45   * href="mitgcm.org/~mlosch/geoidcookbook.pdf" >mitgcm.org/~mlosch/geoidcookbook.pdf</a></li>
46   *
47   * <li>Weikko A. Heiskanen, Helmut Moritz. Physical Geodesy. W. H. Freeman and
48   * Company, 1967. (especially sections 2.13 and equation 2-144)</li>
49   *
50   * <li>Department of Defense World Geodetic System 1984. 2000. NIMA TR 8350.2
51   * Third Edition, Amendment 1.</li> </ol>
52   *
53   * @author Evan Ward
54   */
55  public class ReferenceEllipsoid extends OneAxisEllipsoid implements EarthShape {
56  
57      /** uid is date of last modification. */
58      private static final long serialVersionUID = 20150311L;
59  
60      /** the gravitational parameter of the ellipsoid, in m<sup>3</sup>/s<sup>2</sup>. */
61      private final double GM;
62      /** the rotation rate of the ellipsoid, in rad/s. */
63      private final double spin;
64  
65      /**
66       * Creates a new geodetic Reference Ellipsoid from four defining
67       * parameters.
68       *
69       * @param ae        Equatorial radius, in m
70       * @param f         flattening of the ellipsoid.
71       * @param bodyFrame the frame to attach to the ellipsoid. The origin is at
72       *                  the center of mass, the z axis is the minor axis.
73       * @param GM        gravitational parameter, in m<sup>3</sup>/s<sup>2</sup>
74       * @param spin      &omega; in rad/s
75       */
76      public ReferenceEllipsoid(final double ae,
77                                final double f,
78                                final Frame bodyFrame,
79                                final double GM,
80                                final double spin) {
81          super(ae, f, bodyFrame);
82          this.GM = GM;
83          this.spin = spin;
84      }
85  
86      /**
87       * Gets the gravitational parameter that is part of the definition of the
88       * reference ellipsoid.
89       *
90       * @return GM in m<sup>3</sup>/s<sup>2</sup>
91       */
92      public double getGM() {
93          return this.GM;
94      }
95  
96      /**
97       * Gets the rotation of the ellipsoid about its axis.
98       *
99       * @return &omega; in rad/s
100      */
101     public double getSpin() {
102         return this.spin;
103     }
104 
105     /**
106      * Get the radius of this ellipsoid at the poles.
107      *
108      * @return the polar radius, in meters
109      * @see #getEquatorialRadius()
110      */
111     public double getPolarRadius() {
112         // use the definition of flattening: f = (a-b)/a
113         final double a = this.getEquatorialRadius();
114         final double f = this.getFlattening();
115         return a - f * a;
116     }
117 
118     /**
119      * Gets the normal gravity, that is gravity just due to the reference
120      * ellipsoid's potential. The normal gravity only depends on latitude
121      * because the ellipsoid is axis symmetric.
122      *
123      * <p> The normal gravity is a vector, having both magnitude and direction.
124      * This method only give the magnitude.
125      *
126      * @param latitude geodetic latitude, in radians. That is the angle between
127      *                 the local normal on the ellipsoid and the equatorial
128      *                 plane.
129      * @return the normal gravity, &gamma;, at the given latitude in
130      * m/s<sup>2</sup>. This is the acceleration felt by a mass at rest on the
131      * surface of the reference ellipsoid.
132      */
133     public double getNormalGravity(final double latitude) {
134         /*
135          * Uses the equations from [2] as compiled in [1]. See Class comment.
136          */
137 
138         final double a  = this.getEquatorialRadius();
139         final double f  = this.getFlattening();
140 
141         // define derived constants, move to constructor for more speed
142         // semi-minor axis
143         final double b = a * (1 - f);
144         final double a2 = a * a;
145         final double b2 = b * b;
146         // linear eccentricity
147         final double E = FastMath.sqrt(a2 - b2);
148         // first numerical eccentricity
149         final double e = E / a;
150         // second numerical eccentricity
151         final double eprime = E / b;
152         // an abbreviation for a common term
153         final double m = this.spin * this.spin * a2 * b / this.GM;
154         // gravity at equator
155         final double ya = this.GM / (a * b) *
156                 (1 - 3. / 2. * m - 3. / 14. * eprime * m);
157         // gravity at the poles
158         final double yb = this.GM / a2 * (1 + m + 3. / 7. * eprime * m);
159         // another abbreviation for a common term
160         final double kappa = (b * yb - a * ya) / (a * ya);
161 
162         // calculate normal gravity at the given latitude.
163         final double sin  = FastMath.sin(latitude);
164         final double sin2 = sin * sin;
165         return ya * (1 + kappa * sin2) / FastMath.sqrt(1 - e * e * sin2);
166     }
167 
168     /**
169      * Get the fully normalized coefficient C<sub>2n,0</sub> for the normal
170      * gravity potential.
171      *
172      * @param n index in C<sub>2n,0</sub>, n &gt;= 1.
173      * @return normalized C<sub>2n,0</sub> of the ellipsoid
174      * @see "Department of Defense World Geodetic System 1984. 2000. NIMA TR
175      * 8350.2 Third Edition, Amendment 1."
176      * @see "DMA TR 8350.2. 1984."
177      */
178     public double getC2n0(final int n) {
179         // parameter check
180         if (n < 1) {
181             throw new IllegalArgumentException("Expected n < 1, got n=" + n);
182         }
183 
184         final double a = this.getEquatorialRadius();
185         final double f = this.getFlattening();
186         // define derived constants, move to constructor for more speed
187         // semi-minor axis
188         final double b = a * (1 - f);
189         final double a2 = a * a;
190         final double b2 = b * b;
191         // linear eccentricity
192         final double E = FastMath.sqrt(a2 - b2);
193         // first numerical eccentricity
194         final double e = E / a;
195         // an abbreviation for a common term
196         final double m = this.spin * this.spin * a2 * b / this.GM;
197 
198         /*
199          * derive C2 using a linear approximation, good to ~1e-9, eq 2.118 in
200          * Heiskanen & Moritz[2]. See comment for ReferenceEllipsoid
201          */
202         final double J2 = 2. / 3. * f - 1. / 3. * m - 1. / 3. * f * f + 2. / 21. * f * m;
203         final double C2 = -J2 / FastMath.sqrt(5);
204 
205         // eq 3-62 in chapter 3 of DMA TR 8350.2, calculated by scaling C2,0
206         return (((n & 0x1) == 0) ? 3 : -3) * FastMath.pow(e, 2 * n) *
207                 (1 - n - FastMath.pow(5, 3. / 2.) * n * C2 / (e * e)) /
208                 ((2 * n + 1) * (2 * n + 3) * FastMath.sqrt(4 * n + 1));
209     }
210 
211     @Override
212     public ReferenceEllipsoid getEllipsoid() {
213         return this;
214     }
215 
216     /**
217      * Get the WGS84 ellipsoid, attached to the given body frame.
218      *
219      * @param bodyFrame the earth centered fixed frame
220      * @return a WGS84 reference ellipsoid
221      */
222     public static ReferenceEllipsoid getWgs84(final Frame bodyFrame) {
223         return new ReferenceEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS,
224                 Constants.WGS84_EARTH_FLATTENING, bodyFrame,
225                 Constants.WGS84_EARTH_MU,
226                 Constants.WGS84_EARTH_ANGULAR_VELOCITY);
227     }
228 
229     /**
230      * Get the GRS80 ellipsoid, attached to the given body frame.
231      *
232      * @param bodyFrame the earth centered fixed frame
233      * @return a GRS80 reference ellipsoid
234      */
235     public static ReferenceEllipsoid getGrs80(final Frame bodyFrame) {
236         return new ReferenceEllipsoid(
237                 Constants.GRS80_EARTH_EQUATORIAL_RADIUS,
238                 Constants.GRS80_EARTH_FLATTENING,
239                 bodyFrame,
240                 Constants.GRS80_EARTH_MU,
241                 Constants.GRS80_EARTH_ANGULAR_VELOCITY
242         );
243     }
244 
245 }