1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.forces;
18  
19  import java.util.stream.Stream;
20  
21  import org.hipparchus.CalculusFieldElement;
22  import org.hipparchus.Field;
23  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
24  import org.hipparchus.geometry.euclidean.threed.Vector3D;
25  import org.orekit.propagation.FieldSpacecraftState;
26  import org.orekit.propagation.SpacecraftState;
27  import org.orekit.propagation.events.EventDetector;
28  import org.orekit.propagation.events.EventDetectorsProvider;
29  import org.orekit.propagation.events.FieldEventDetector;
30  import org.orekit.propagation.numerical.FieldTimeDerivativesEquations;
31  import org.orekit.propagation.numerical.TimeDerivativesEquations;
32  import org.orekit.time.AbsoluteDate;
33  import org.orekit.time.FieldAbsoluteDate;
34  import org.orekit.utils.ParameterDriversProvider;
35  
36  /** This interface represents a force modifying spacecraft motion.
37   *
38   * <p>
39   * Objects implementing this interface are intended to be added to a
40   * {@link org.orekit.propagation.numerical.NumericalPropagator numerical propagator}
41   * before the propagation is started.
42   *
43   * <p>
44   * The propagator will call at each step the {@link #addContribution(SpacecraftState,
45   * TimeDerivativesEquations)} method. The force model instance will extract all the
46   * state data it needs (date, position, velocity, frame, attitude, mass) from the first
47   * parameter. From these state data, it will compute the perturbing acceleration. It
48   * will then add this acceleration to the second parameter which will take thins
49   * contribution into account and will use the Gauss equations to evaluate its impact
50   * on the global state derivative.
51   * </p>
52   * <p>
53   * Force models which create discontinuous acceleration patterns (typically for maneuvers
54   * start/stop or solar eclipses entry/exit) must provide one or more {@link
55   * org.orekit.propagation.events.EventDetector events detectors} to the
56   * propagator thanks to their {@link #getEventDetectors()} method. This method
57   * is called once just before propagation starts. The events states will be checked by
58   * the propagator to ensure accurate propagation and proper events handling.
59   * </p>
60   *
61   * @author Mathieu Rom&eacute;ro
62   * @author Luc Maisonobe
63   * @author V&eacute;ronique Pommier-Maurussane
64   * @author Melina Vanel
65   */
66  public interface ForceModel extends ParameterDriversProvider, EventDetectorsProvider {
67  
68      /**
69       * Initialize the force model at the start of propagation. This method will be called
70       * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
71       * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
72       * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
73       *
74       * <p> The default implementation of this method does nothing.</p>
75       *
76       * @param initialState spacecraft state at the start of propagation.
77       * @param target       date of propagation. Not equal to {@code initialState.getDate()}.
78       */
79      default void init(final SpacecraftState initialState, final AbsoluteDate target) {
80      }
81  
82      /**
83       * Initialize the force model at the start of propagation. This method will be called
84       * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
85       * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
86       * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
87       *
88       * <p> The default implementation of this method does nothing.</p>
89       *
90       * @param initialState spacecraft state at the start of propagation.
91       * @param target       date of propagation. Not equal to {@code initialState.getDate()}.
92       * @param <T> type of the elements
93       */
94      default <T extends CalculusFieldElement<T>> void init(final FieldSpacecraftState<T> initialState, final FieldAbsoluteDate<T> target) {
95          init(initialState.toSpacecraftState(), target.toAbsoluteDate());
96      }
97  
98      /** {@inheritDoc}.*/
99      @Override
100     default Stream<EventDetector> getEventDetectors() {
101         return getEventDetectors(getParametersDrivers());
102     }
103 
104     /** {@inheritDoc}.*/
105     @Override
106     default <T extends CalculusFieldElement<T>> Stream<FieldEventDetector<T>> getFieldEventDetectors(final Field<T> field) {
107         return getFieldEventDetectors(field, getParametersDrivers());
108     }
109 
110     /** Compute the contribution of the force model to the perturbing
111      * acceleration.
112      * <p>
113      * The default implementation simply adds the {@link #acceleration(SpacecraftState, double[]) acceleration}
114      * as a non-Keplerian acceleration.
115      * </p>
116      * @param s current state information: date, kinematics, attitude
117      * @param adder object where the contribution should be added
118      */
119     default void addContribution(final SpacecraftState s, final TimeDerivativesEquations adder) {
120         final double[] parameters = getParameters(s.getDate());
121         adder.addNonKeplerianAcceleration(acceleration(s, getParameters(s.getDate())));
122         adder.addMassDerivative(getMassDerivative(s, parameters));
123     }
124 
125     /** Compute the contribution of the force model to the perturbing
126      * acceleration.
127      * @param s current state information: date, kinematics, attitude
128      * @param adder object where the contribution should be added
129      * @param <T> type of the elements
130      */
131     default <T extends CalculusFieldElement<T>> void addContribution(final FieldSpacecraftState<T> s, final FieldTimeDerivativesEquations<T> adder) {
132         final T[] parameters = getParameters(s.getDate().getField(), s.getDate());
133         adder.addNonKeplerianAcceleration(acceleration(s, parameters));
134         adder.addMassDerivative(getMassDerivative(s, parameters));
135     }
136 
137     /**
138      * Compute the mass rate. Zero by default.
139      * @param state current state information: date, kinematics, attitude
140      * @param parameters values of the force model parameters at state date
141      * @return mass rate (kg/s)
142      * @since 13.1
143      */
144     default double getMassDerivative(final SpacecraftState state, final double[] parameters) {
145         return 0.;
146     }
147 
148     /**
149      * Compute the mass rate. Zero by default.
150      * @param <T> field type
151      * @param state current state information: date, kinematics, attitude
152      * @param parameters values of the force model parameters at state date
153      * @return mass rate (kg/s)
154      * @since 13.1
155      */
156     default <T extends CalculusFieldElement<T>> T getMassDerivative(FieldSpacecraftState<T> state, T[] parameters) {
157         return state.getMass().getField().getZero();
158     }
159 
160     /** Check if force model depends on position only at a given, fixed date.
161      * @return true if force model depends on position only, false
162      * if it depends on mass or velocity, either directly or due to a dependency
163      * on attitude
164      * @since 9.0
165      */
166     boolean dependsOnPositionOnly();
167 
168     /** Check if force model depends on attitude's rotation rate or acceleration at a given, fixed date.
169      * If false, it essentially means that at most the attitude's rotation is used when computing the acceleration vector.
170      * The default implementation returns false as common forces do not.
171      * @return true if force model depends on attitude derivatives
172      * @since 12.1
173      */
174     default boolean dependsOnAttitudeRate() {
175         return false;
176     }
177 
178     /** Compute acceleration.
179      * @param s current state information: date, kinematics, attitude
180      * @param parameters values of the force model parameters at state date,
181      * only 1 value for each parameterDriver
182      * @return acceleration in same frame as state
183      * @since 9.0
184      */
185     Vector3D acceleration(SpacecraftState s, double[] parameters);
186 
187     /** Compute acceleration.
188      * @param s current state information: date, kinematics, attitude
189      * @param parameters values of the force model parameters at state date,
190      * only 1 value for each parameterDriver
191      * @return acceleration in same frame as state
192      * @param <T> type of the elements
193      * @since 9.0
194      */
195     <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(FieldSpacecraftState<T> s, T[] parameters);
196 }