1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.orbits;
18
19 import org.hipparchus.geometry.euclidean.threed.Vector3D;
20 import org.hipparchus.linear.DecompositionSolver;
21 import org.hipparchus.linear.MatrixUtils;
22 import org.hipparchus.linear.QRDecomposition;
23 import org.hipparchus.linear.RealMatrix;
24 import org.hipparchus.linear.RealVector;
25 import org.hipparchus.util.FastMath;
26 import org.hipparchus.util.MathArrays;
27 import org.orekit.errors.OrekitIllegalArgumentException;
28 import org.orekit.errors.OrekitInternalError;
29 import org.orekit.errors.OrekitMessages;
30 import org.orekit.frames.Frame;
31 import org.orekit.time.AbsoluteDate;
32 import org.orekit.time.TimeOffset;
33 import org.orekit.utils.PVCoordinates;
34 import org.orekit.utils.ShiftablePVCoordinatesHolder;
35 import org.orekit.utils.TimeStampedPVCoordinates;
36
37 /**
38 * This class handles orbital parameters.
39
40 * <p>
41 * For user convenience, both the Cartesian and the equinoctial elements
42 * are provided by this class, regardless of the canonical representation
43 * implemented in the derived class (which may be classical Keplerian
44 * elements for example).
45 * </p>
46 * <p>
47 * The parameters are defined in a frame specified by the user. It is important
48 * to make sure this frame is consistent: it probably is inertial and centered
49 * on the central body. This information is used for example by some
50 * force models.
51 * </p>
52 * <p>
53 * Instance of this class are guaranteed to be immutable.
54 * </p>
55 * @author Luc Maisonobe
56 * @author Guylaine Prat
57 * @author Fabien Maussion
58 * @author Véronique Pommier-Maurussane
59 */
60 public abstract class Orbit
61 implements ShiftablePVCoordinatesHolder<Orbit> {
62
63 /** Absolute tolerance when checking if the rate of the position angle is Keplerian or not. */
64 protected static final double TOLERANCE_POSITION_ANGLE_RATE = 1e-15;
65
66 /** Frame in which are defined the orbital parameters. */
67 private final Frame frame;
68
69 /** Date of the orbital parameters. */
70 private final AbsoluteDate date;
71
72 /** Value of mu used to compute position and velocity (m³/s²). */
73 private final double mu;
74
75 /** Computed position.
76 * @since 12.0
77 */
78 private Vector3D position;
79
80 /** Computed PVCoordinates. */
81 private TimeStampedPVCoordinates pvCoordinates;
82
83 /** Jacobian of the orbital parameters with mean angle with respect to the Cartesian coordinates. */
84 private double[][] jacobianMeanWrtCartesian;
85
86 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with mean angle. */
87 private double[][] jacobianWrtParametersMean;
88
89 /** Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian coordinates. */
90 private double[][] jacobianEccentricWrtCartesian;
91
92 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with eccentric angle. */
93 private double[][] jacobianWrtParametersEccentric;
94
95 /** Jacobian of the orbital parameters with true angle with respect to the Cartesian coordinates. */
96 private double[][] jacobianTrueWrtCartesian;
97
98 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with true angle. */
99 private double[][] jacobianWrtParametersTrue;
100
101 /** Default constructor.
102 * Build a new instance with arbitrary default elements.
103 * @param frame the frame in which the parameters are defined
104 * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
105 * @param date date of the orbital parameters
106 * @param mu central attraction coefficient (m^3/s^2)
107 * @exception IllegalArgumentException if frame is not a {@link
108 * Frame#isPseudoInertial pseudo-inertial frame}
109 */
110 protected Orbit(final Frame frame, final AbsoluteDate date, final double mu)
111 throws IllegalArgumentException {
112 ensurePseudoInertialFrame(frame);
113 this.date = date;
114 this.mu = mu;
115 this.pvCoordinates = null;
116 this.frame = frame;
117 jacobianMeanWrtCartesian = null;
118 jacobianWrtParametersMean = null;
119 jacobianEccentricWrtCartesian = null;
120 jacobianWrtParametersEccentric = null;
121 jacobianTrueWrtCartesian = null;
122 jacobianWrtParametersTrue = null;
123 }
124
125 /** Set the orbit from Cartesian parameters.
126 *
127 * <p> The acceleration provided in {@code pvCoordinates} is accessible using
128 * {@link #getPVCoordinates()} and {@link #getPVCoordinates(Frame)}. All other methods
129 * use {@code mu} and the position to compute the acceleration, including
130 * {@link #shiftedBy(double)} and {@link #getPVCoordinates(AbsoluteDate, Frame)}.
131 *
132 * @param pvCoordinates the position and velocity in the inertial frame
133 * @param frame the frame in which the {@link TimeStampedPVCoordinates} are defined
134 * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
135 * @param mu central attraction coefficient (m^3/s^2)
136 * @exception IllegalArgumentException if frame is not a {@link
137 * Frame#isPseudoInertial pseudo-inertial frame}
138 */
139 protected Orbit(final TimeStampedPVCoordinates pvCoordinates, final Frame frame, final double mu)
140 throws IllegalArgumentException {
141 ensurePseudoInertialFrame(frame);
142 this.date = pvCoordinates.getDate();
143 this.mu = mu;
144 if (pvCoordinates.getAcceleration().getNorm2Sq() == 0) {
145 // the acceleration was not provided,
146 // compute it from Newtonian attraction
147 final double r2 = pvCoordinates.getPosition().getNorm2Sq();
148 final double r3 = r2 * FastMath.sqrt(r2);
149 this.pvCoordinates = new TimeStampedPVCoordinates(pvCoordinates.getDate(),
150 pvCoordinates.getPosition(),
151 pvCoordinates.getVelocity(),
152 new Vector3D(-mu / r3, pvCoordinates.getPosition()));
153 } else {
154 this.pvCoordinates = pvCoordinates;
155 }
156 this.frame = frame;
157 }
158
159 /** Compute non-Keplerian part of the acceleration from first time derivatives.
160 * @return non-Keplerian part of the acceleration
161 * @since 13.1
162 */
163 protected Vector3D nonKeplerianAcceleration() {
164
165 final double[][] dPdC = new double[6][6];
166 final PositionAngleType positionAngleType = PositionAngleType.MEAN;
167 getJacobianWrtCartesian(positionAngleType, dPdC);
168 final RealMatrix subMatrix = MatrixUtils.createRealMatrix(dPdC);
169
170 final DecompositionSolver solver = getDecompositionSolver(subMatrix);
171
172 final double[] derivatives = new double[6];
173 getType().mapOrbitToArray(this, positionAngleType, new double[6], derivatives);
174 derivatives[5] -= getKeplerianMeanMotion();
175
176 final RealVector solution = solver.solve(MatrixUtils.createRealVector(derivatives));
177 return new Vector3D(solution.getEntry(3), solution.getEntry(4), solution.getEntry(5));
178
179 }
180
181 /** Check if Cartesian coordinates include non-Keplerian acceleration.
182 * @param pva Cartesian coordinates
183 * @param mu central attraction coefficient
184 * @return true if Cartesian coordinates include non-Keplerian acceleration
185 */
186 protected static boolean hasNonKeplerianAcceleration(final PVCoordinates pva, final double mu) {
187
188 final Vector3D a = pva.getAcceleration();
189 if (a == null) {
190 return false;
191 }
192
193 final Vector3D p = pva.getPosition();
194 final double r2 = p.getNorm2Sq();
195
196 // Check if acceleration is relatively close to 0 compared to the Keplerian acceleration
197 final double tolerance = mu * 1e-9;
198 final Vector3D aTimesR2 = a.scalarMultiply(r2);
199 if (aTimesR2.getNorm() < tolerance) {
200 return false;
201 }
202
203 if ((aTimesR2.add(p.normalize().scalarMultiply(mu))).getNorm() > tolerance) {
204 // we have a relevant acceleration, we can compute derivatives
205 return true;
206 } else {
207 // the provided acceleration is either too small to be reliable (probably even 0), or NaN
208 return false;
209 }
210 }
211
212 /**
213 * Compute corrected shift from non-Keplerian part.
214 * @param keplerianShifted Keplerian shift
215 * @param dt time shift
216 * @return corrected position-velocity-acceleration vector
217 * @since 14.0
218 */
219 protected PVCoordinates shiftNonKeplerian(final PVCoordinates keplerianShifted, final double dt) {
220 // extract non-Keplerian acceleration from first time derivatives
221 final Vector3D nonKeplerianAcceleration = nonKeplerianAcceleration();
222
223 // add second order effect of non-Keplerian acceleration to Keplerian-only shift
224 final Vector3D fixedV = nonKeplerianAcceleration.scalarMultiply(dt).add(keplerianShifted.getVelocity());
225 final Vector3D fixedP = nonKeplerianAcceleration.scalarMultiply(dt * dt / 2.).add(keplerianShifted.getPosition());
226 final double fixedR2 = fixedP.getNorm2Sq();
227 final double fixedR = FastMath.sqrt(fixedR2);
228 final Vector3D fixedA = nonKeplerianAcceleration.add(new Vector3D(-getMu() / (fixedR2 * fixedR),
229 keplerianShifted.getPosition()));
230 return new PVCoordinates(fixedP, fixedV, fixedA);
231 }
232
233 /** Returns true if and only if the orbit is elliptical i.e. has a non-negative semi-major axis.
234 * @return true if getA() is strictly greater than 0
235 * @since 12.0
236 */
237 public boolean isElliptical() {
238 return getA() > 0.;
239 }
240
241 /** Get the orbit type.
242 * @return orbit type
243 */
244 public abstract OrbitType getType();
245
246 /** Ensure the defining frame is a pseudo-inertial frame.
247 * @param frame frame to check
248 * @exception IllegalArgumentException if frame is not a {@link
249 * Frame#isPseudoInertial pseudo-inertial frame}
250 */
251 private static void ensurePseudoInertialFrame(final Frame frame)
252 throws IllegalArgumentException {
253 if (!frame.isPseudoInertial()) {
254 throw new OrekitIllegalArgumentException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
255 frame.getName());
256 }
257 }
258
259 /** Get the frame in which the orbital parameters are defined.
260 * @return frame in which the orbital parameters are defined
261 */
262 public Frame getFrame() {
263 return frame;
264 }
265
266 /** Get the semi-major axis.
267 * <p>Note that the semi-major axis is considered negative for hyperbolic orbits.</p>
268 * @return semi-major axis (m)
269 */
270 public abstract double getA();
271
272 /** Get the semi-major axis derivative.
273 * <p>Note that the semi-major axis is considered negative for hyperbolic orbits.</p>
274 * <p>
275 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
276 * </p>
277 * @return semi-major axis derivative (m/s)
278 * @since 9.0
279 */
280 public abstract double getADot();
281
282 /** Get the first component of the equinoctial eccentricity vector.
283 * @return first component of the equinoctial eccentricity vector
284 */
285 public abstract double getEquinoctialEx();
286
287 /** Get the first component of the equinoctial eccentricity vector derivative.
288 * <p>
289 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
290 * </p>
291 * @return first component of the equinoctial eccentricity vector derivative
292 * @since 9.0
293 */
294 public abstract double getEquinoctialExDot();
295
296 /** Get the second component of the equinoctial eccentricity vector.
297 * @return second component of the equinoctial eccentricity vector
298 */
299 public abstract double getEquinoctialEy();
300
301 /** Get the second component of the equinoctial eccentricity vector derivative.
302 * <p>
303 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
304 * </p>
305 * @return second component of the equinoctial eccentricity vector derivative
306 * @since 9.0
307 */
308 public abstract double getEquinoctialEyDot();
309
310 /** Get the first component of the inclination vector.
311 * @return first component of the inclination vector
312 */
313 public abstract double getHx();
314
315 /** Get the first component of the inclination vector derivative.
316 * <p>
317 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
318 * </p>
319 * @return first component of the inclination vector derivative
320
321 * @since 9.0
322 */
323 public abstract double getHxDot();
324
325 /** Get the second component of the inclination vector.
326 * @return second component of the inclination vector
327 */
328 public abstract double getHy();
329
330 /** Get the second component of the inclination vector derivative.
331 * <p>
332 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
333 * </p>
334 * @return second component of the inclination vector derivative
335 * @since 9.0
336 */
337 public abstract double getHyDot();
338
339 /** Get the eccentric longitude argument.
340 * @return E + ω + Ω eccentric longitude argument (rad)
341 */
342 public abstract double getLE();
343
344 /** Get the eccentric longitude argument derivative.
345 * <p>
346 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
347 * </p>
348 * @return d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
349 * @since 9.0
350 */
351 public abstract double getLEDot();
352
353 /** Get the true longitude argument.
354 * @return v + ω + Ω true longitude argument (rad)
355 */
356 public abstract double getLv();
357
358 /** Get the true longitude argument derivative.
359 * <p>
360 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
361 * </p>
362 * @return d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
363 * @since 9.0
364 */
365 public abstract double getLvDot();
366
367 /** Get the mean longitude argument.
368 * @return M + ω + Ω mean longitude argument (rad)
369 */
370 public abstract double getLM();
371
372 /** Get the mean longitude argument derivative.
373 * <p>
374 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
375 * </p>
376 * @return d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
377 * @since 9.0
378 */
379 public abstract double getLMDot();
380
381 // Additional orbital elements
382
383 /** Get the eccentricity.
384 * @return eccentricity
385 */
386 public abstract double getE();
387
388 /** Get the eccentricity derivative.
389 * <p>
390 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
391 * </p>
392 * @return eccentricity derivative
393 * @since 9.0
394 */
395 public abstract double getEDot();
396
397 /** Get the inclination.
398 * @return inclination (rad)
399 */
400 public abstract double getI();
401
402 /** Get the inclination derivative.
403 * <p>
404 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
405 * </p>
406 * @return inclination derivative (rad/s)
407 * @since 9.0
408 */
409 public abstract double getIDot();
410
411 /** Check if orbit includes non-Keplerian rates.
412 * @return true if orbit includes non-Keplerian derivatives
413 * @see #getADot()
414 * @see #getEquinoctialExDot()
415 * @see #getEquinoctialEyDot()
416 * @see #getHxDot()
417 * @see #getHyDot()
418 * @see #getLEDot()
419 * @see #getLvDot()
420 * @see #getLMDot()
421 * @see #getEDot()
422 * @see #getIDot()
423 * @since 13.0
424 */
425 public boolean hasNonKeplerianAcceleration() {
426 return hasNonKeplerianAcceleration(getPVCoordinates(), getMu());
427 }
428
429 /** Get the central acceleration constant.
430 * @return central acceleration constant
431 */
432 public double getMu() {
433 return mu;
434 }
435
436 /** Get the Keplerian period.
437 * <p>The Keplerian period is computed directly from semi major axis
438 * and central acceleration constant.</p>
439 * @return Keplerian period in seconds, or positive infinity for hyperbolic orbits
440 */
441 public double getKeplerianPeriod() {
442 final double a = getA();
443 return isElliptical() ? 2.0 * FastMath.PI * a * FastMath.sqrt(a / mu) : Double.POSITIVE_INFINITY;
444 }
445
446 /** Get the Keplerian mean motion.
447 * <p>The Keplerian mean motion is computed directly from semi major axis
448 * and central acceleration constant.</p>
449 * @return Keplerian mean motion in radians per second
450 */
451 public double getKeplerianMeanMotion() {
452 final double absA = FastMath.abs(getA());
453 return FastMath.sqrt(mu / absA) / absA;
454 }
455
456 /** Get the derivative of the mean anomaly with respect to the semi major axis.
457 * @return derivative of the mean anomaly with respect to the semi major axis
458 */
459 public double getMeanAnomalyDotWrtA() {
460 return -1.5 * getKeplerianMeanMotion() / getA();
461 }
462
463 /** Get the date of orbital parameters.
464 * @return date of the orbital parameters
465 */
466 public AbsoluteDate getDate() {
467 return date;
468 }
469
470 /** Get the position in definition frame.
471 * @return position in the definition frame
472 * @see #getPVCoordinates()
473 * @since 12.0
474 */
475 @Override
476 public Vector3D getPosition() {
477 if (position == null) {
478 position = initPosition();
479 }
480 return position;
481 }
482
483 /** Get the {@link TimeStampedPVCoordinates} in definition frame.
484 * @return pvCoordinates in the definition frame
485 * @see #getPVCoordinates(Frame)
486 */
487 public TimeStampedPVCoordinates getPVCoordinates() {
488 if (pvCoordinates == null) {
489 pvCoordinates = initPVCoordinates();
490 position = pvCoordinates.getPosition();
491 }
492 return pvCoordinates;
493 }
494
495 /** Compute the position coordinates from the canonical parameters.
496 * @return computed position coordinates
497 * @since 12.0
498 */
499 protected abstract Vector3D initPosition();
500
501 /** Compute the position/velocity coordinates from the canonical parameters.
502 * @return computed position/velocity coordinates
503 */
504 protected abstract TimeStampedPVCoordinates initPVCoordinates();
505
506 /**
507 * Create a new object representing the same physical orbital state, but attached to a different reference frame.
508 * If the new frame is not inertial, an exception will be thrown.
509 *
510 * @param inertialFrame reference frame of output orbit
511 * @return orbit with different frame
512 * @since 13.0
513 */
514 public abstract Orbit inFrame(Frame inertialFrame);
515
516 /** Get a time-shifted orbit.
517 * <p>
518 * The orbit can be slightly shifted to close dates. The shifting model is a
519 * Keplerian one if no derivatives are available in the orbit, or Keplerian
520 * plus quadratic effect of the non-Keplerian acceleration if derivatives are
521 * available. Shifting is <em>not</em> intended as a replacement for proper
522 * orbit propagation but should be sufficient for small time shifts or coarse
523 * accuracy.
524 * </p>
525 * @param dt time shift in seconds
526 * @return a new orbit, shifted with respect to the instance (which is immutable)
527 */
528 @Override
529 public abstract Orbit shiftedBy(double dt);
530
531 /** Get a time-shifted orbit.
532 * <p>
533 * The orbit can be slightly shifted to close dates. The shifting model is a
534 * Keplerian one if no derivatives are available in the orbit, or Keplerian
535 * plus quadratic effect of the non-Keplerian acceleration if derivatives are
536 * available. Shifting is <em>not</em> intended as a replacement for proper
537 * orbit propagation but should be sufficient for small time shifts or coarse
538 * accuracy.
539 * </p>
540 * @param dt time shift
541 * @return a new orbit, shifted with respect to the instance (which is immutable)
542 */
543 @Override
544 public abstract Orbit shiftedBy(TimeOffset dt);
545
546 /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
547 * <p>
548 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
549 * respect to Cartesian coordinate j. This means each row corresponds to one orbital parameter
550 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
551 * </p>
552 * @param type type of the position angle to use
553 * @param jacobian placeholder 6x6 (or larger) matrix to be filled with the Jacobian, if matrix
554 * is larger than 6x6, only the 6x6 upper left corner will be modified
555 */
556 public void getJacobianWrtCartesian(final PositionAngleType type, final double[][] jacobian) {
557
558 final double[][] cachedJacobian;
559 synchronized (this) {
560 switch (type) {
561 case MEAN :
562 if (jacobianMeanWrtCartesian == null) {
563 // first call, we need to compute the Jacobian and cache it
564 jacobianMeanWrtCartesian = computeJacobianMeanWrtCartesian();
565 }
566 cachedJacobian = jacobianMeanWrtCartesian;
567 break;
568 case ECCENTRIC :
569 if (jacobianEccentricWrtCartesian == null) {
570 // first call, we need to compute the Jacobian and cache it
571 jacobianEccentricWrtCartesian = computeJacobianEccentricWrtCartesian();
572 }
573 cachedJacobian = jacobianEccentricWrtCartesian;
574 break;
575 case TRUE :
576 if (jacobianTrueWrtCartesian == null) {
577 // first call, we need to compute the Jacobian and cache it
578 jacobianTrueWrtCartesian = computeJacobianTrueWrtCartesian();
579 }
580 cachedJacobian = jacobianTrueWrtCartesian;
581 break;
582 default :
583 throw new OrekitInternalError(null);
584 }
585 }
586
587 // fill the user provided array
588 for (int i = 0; i < cachedJacobian.length; ++i) {
589 System.arraycopy(cachedJacobian[i], 0, jacobian[i], 0, cachedJacobian[i].length);
590 }
591
592 }
593
594 /** Compute the Jacobian of the Cartesian parameters with respect to the orbital parameters.
595 * <p>
596 * Element {@code jacobian[i][j]} is the derivative of Cartesian coordinate i of the orbit with
597 * respect to orbital parameter j. This means each row corresponds to one Cartesian coordinate
598 * x, y, z, xdot, ydot, zdot whereas columns 0 to 5 correspond to the orbital parameters.
599 * </p>
600 * @param type type of the position angle to use
601 * @param jacobian placeholder 6x6 (or larger) matrix to be filled with the Jacobian, if matrix
602 * is larger than 6x6, only the 6x6 upper left corner will be modified
603 */
604 public void getJacobianWrtParameters(final PositionAngleType type, final double[][] jacobian) {
605
606 final double[][] cachedJacobian;
607 synchronized (this) {
608 switch (type) {
609 case MEAN :
610 if (jacobianWrtParametersMean == null) {
611 // first call, we need to compute the Jacobian and cache it
612 jacobianWrtParametersMean = createInverseJacobian(type);
613 }
614 cachedJacobian = jacobianWrtParametersMean;
615 break;
616 case ECCENTRIC :
617 if (jacobianWrtParametersEccentric == null) {
618 // first call, we need to compute the Jacobian and cache it
619 jacobianWrtParametersEccentric = createInverseJacobian(type);
620 }
621 cachedJacobian = jacobianWrtParametersEccentric;
622 break;
623 case TRUE :
624 if (jacobianWrtParametersTrue == null) {
625 // first call, we need to compute the Jacobian and cache it
626 jacobianWrtParametersTrue = createInverseJacobian(type);
627 }
628 cachedJacobian = jacobianWrtParametersTrue;
629 break;
630 default :
631 throw new OrekitInternalError(null);
632 }
633 }
634
635 // fill the user-provided array
636 for (int i = 0; i < cachedJacobian.length; ++i) {
637 System.arraycopy(cachedJacobian[i], 0, jacobian[i], 0, cachedJacobian[i].length);
638 }
639
640 }
641
642 /** Create an inverse Jacobian.
643 * @param type type of the position angle to use
644 * @return inverse Jacobian
645 */
646 private double[][] createInverseJacobian(final PositionAngleType type) {
647
648 // get the direct Jacobian
649 final double[][] directJacobian = new double[6][6];
650 getJacobianWrtCartesian(type, directJacobian);
651
652 // invert the direct Jacobian
653 final RealMatrix matrix = MatrixUtils.createRealMatrix(directJacobian);
654 final DecompositionSolver solver = getDecompositionSolver(matrix);
655 return solver.getInverse().getData();
656
657 }
658
659 /**
660 * Method to build a matrix decomposition solver.
661 * @param realMatrix matrix
662 * @return solver
663 * @since 13.1
664 */
665 protected DecompositionSolver getDecompositionSolver(final RealMatrix realMatrix) {
666 return new QRDecomposition(realMatrix).getSolver();
667 }
668
669 /** Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
670 * <p>
671 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
672 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
673 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
674 * </p>
675 * <p>
676 * The array returned by this method will not be modified.
677 * </p>
678 * @return 6x6 Jacobian matrix
679 * @see #computeJacobianEccentricWrtCartesian()
680 * @see #computeJacobianTrueWrtCartesian()
681 */
682 protected abstract double[][] computeJacobianMeanWrtCartesian();
683
684 /** Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
685 * <p>
686 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
687 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
688 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
689 * </p>
690 * <p>
691 * The array returned by this method will not be modified.
692 * </p>
693 * @return 6x6 Jacobian matrix
694 * @see #computeJacobianMeanWrtCartesian()
695 * @see #computeJacobianTrueWrtCartesian()
696 */
697 protected abstract double[][] computeJacobianEccentricWrtCartesian();
698
699 /** Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
700 * <p>
701 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
702 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
703 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
704 * </p>
705 * <p>
706 * The array returned by this method will not be modified.
707 * </p>
708 * @return 6x6 Jacobian matrix
709 * @see #computeJacobianMeanWrtCartesian()
710 * @see #computeJacobianEccentricWrtCartesian()
711 */
712 protected abstract double[][] computeJacobianTrueWrtCartesian();
713
714 /** Add the contribution of the Keplerian motion to parameters derivatives
715 * <p>
716 * This method is used by integration-based propagators to evaluate the part of Keplerian
717 * motion to evolution of the orbital state.
718 * </p>
719 * @param type type of the position angle in the state
720 * @param gm attraction coefficient to use
721 * @param pDot array containing orbital state derivatives to update (the Keplerian
722 * part must be <em>added</em> to the array components, as the array may already
723 * contain some non-zero elements corresponding to non-Keplerian parts)
724 */
725 public abstract void addKeplerContribution(PositionAngleType type, double gm, double[] pDot);
726
727 /** Fill a Jacobian half row with a single vector.
728 * @param a coefficient of the vector
729 * @param v vector
730 * @param row Jacobian matrix row
731 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
732 */
733 protected static void fillHalfRow(final double a, final Vector3D v, final double[] row, final int j) {
734 row[j] = a * v.getX();
735 row[j + 1] = a * v.getY();
736 row[j + 2] = a * v.getZ();
737 }
738
739 /** Fill a Jacobian half row with a linear combination of vectors.
740 * @param a1 coefficient of the first vector
741 * @param v1 first vector
742 * @param a2 coefficient of the second vector
743 * @param v2 second vector
744 * @param row Jacobian matrix row
745 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
746 */
747 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
748 final double[] row, final int j) {
749 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX());
750 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY());
751 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ());
752 }
753
754 /** Fill a Jacobian half row with a linear combination of vectors.
755 * @param a1 coefficient of the first vector
756 * @param v1 first vector
757 * @param a2 coefficient of the second vector
758 * @param v2 second vector
759 * @param a3 coefficient of the third vector
760 * @param v3 third vector
761 * @param row Jacobian matrix row
762 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
763 */
764 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
765 final double a3, final Vector3D v3,
766 final double[] row, final int j) {
767 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX(), a3, v3.getX());
768 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY(), a3, v3.getY());
769 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ(), a3, v3.getZ());
770 }
771
772 /** Fill a Jacobian half row with a linear combination of vectors.
773 * @param a1 coefficient of the first vector
774 * @param v1 first vector
775 * @param a2 coefficient of the second vector
776 * @param v2 second vector
777 * @param a3 coefficient of the third vector
778 * @param v3 third vector
779 * @param a4 coefficient of the fourth vector
780 * @param v4 fourth vector
781 * @param row Jacobian matrix row
782 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
783 */
784 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
785 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
786 final double[] row, final int j) {
787 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX(), a3, v3.getX(), a4, v4.getX());
788 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY(), a3, v3.getY(), a4, v4.getY());
789 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ(), a3, v3.getZ(), a4, v4.getZ());
790 }
791
792 /** Fill a Jacobian half row with a linear combination of vectors.
793 * @param a1 coefficient of the first vector
794 * @param v1 first vector
795 * @param a2 coefficient of the second vector
796 * @param v2 second vector
797 * @param a3 coefficient of the third vector
798 * @param v3 third vector
799 * @param a4 coefficient of the fourth vector
800 * @param v4 fourth vector
801 * @param a5 coefficient of the fifth vector
802 * @param v5 fifth vector
803 * @param row Jacobian matrix row
804 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
805 */
806 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
807 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
808 final double a5, final Vector3D v5,
809 final double[] row, final int j) {
810 final double[] a = new double[] {
811 a1, a2, a3, a4, a5
812 };
813 row[j] = MathArrays.linearCombination(a, new double[] {
814 v1.getX(), v2.getX(), v3.getX(), v4.getX(), v5.getX()
815 });
816 row[j + 1] = MathArrays.linearCombination(a, new double[] {
817 v1.getY(), v2.getY(), v3.getY(), v4.getY(), v5.getY()
818 });
819 row[j + 2] = MathArrays.linearCombination(a, new double[] {
820 v1.getZ(), v2.getZ(), v3.getZ(), v4.getZ(), v5.getZ()
821 });
822 }
823
824 /** Fill a Jacobian half row with a linear combination of vectors.
825 * @param a1 coefficient of the first vector
826 * @param v1 first vector
827 * @param a2 coefficient of the second vector
828 * @param v2 second vector
829 * @param a3 coefficient of the third vector
830 * @param v3 third vector
831 * @param a4 coefficient of the fourth vector
832 * @param v4 fourth vector
833 * @param a5 coefficient of the fifth vector
834 * @param v5 fifth vector
835 * @param a6 coefficient of the sixth vector
836 * @param v6 sixth vector
837 * @param row Jacobian matrix row
838 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
839 */
840 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
841 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
842 final double a5, final Vector3D v5, final double a6, final Vector3D v6,
843 final double[] row, final int j) {
844 final double[] a = new double[] {
845 a1, a2, a3, a4, a5, a6
846 };
847 row[j] = MathArrays.linearCombination(a, new double[] {
848 v1.getX(), v2.getX(), v3.getX(), v4.getX(), v5.getX(), v6.getX()
849 });
850 row[j + 1] = MathArrays.linearCombination(a, new double[] {
851 v1.getY(), v2.getY(), v3.getY(), v4.getY(), v5.getY(), v6.getY()
852 });
853 row[j + 2] = MathArrays.linearCombination(a, new double[] {
854 v1.getZ(), v2.getZ(), v3.getZ(), v4.getZ(), v5.getZ(), v6.getZ()
855 });
856 }
857
858 }