Class FieldNumericalPropagator<T extends CalculusFieldElement<T>>
- java.lang.Object
-
- org.orekit.propagation.FieldAbstractPropagator<T>
-
- org.orekit.propagation.integration.FieldAbstractIntegratedPropagator<T>
-
- org.orekit.propagation.numerical.FieldNumericalPropagator<T>
-
- Type Parameters:
T- type of the field elements
- All Implemented Interfaces:
FieldPropagator<T>,FieldPVCoordinatesProvider<T>
public class FieldNumericalPropagator<T extends CalculusFieldElement<T>> extends FieldAbstractIntegratedPropagator<T>
This class propagatesorbitsusing numerical integration.Numerical propagation is much more accurate than analytical propagation like for example
KeplerianorEckstein-Hechler, but requires a few more steps to set up to be used properly. Whereas analytical propagators are configured only thanks to their various constructors and can be used immediately after construction, numerical propagators configuration involve setting several parameters between construction time and propagation time.The configuration parameters that can be set are:
- the initial spacecraft state (
setInitialState(FieldSpacecraftState)) - the central attraction coefficient (
setMu(CalculusFieldElement)) - the various force models (
addForceModel(ForceModel),removeForceModels()) - the
typeof orbital parameters to be used for propagation (setOrbitType(OrbitType)), - the
typeof position angle to be used in orbital parameters to be used for propagation where it is relevant (setPositionAngleType(PositionAngleType)), - whether
additional derivatives providersshould be propagated along with orbital state (FieldAbstractIntegratedPropagator.addAdditionalDerivativesProvider(org.orekit.propagation.integration.FieldAdditionalDerivativesProvider)), - the discrete events that should be triggered during propagation
(
FieldAbstractIntegratedPropagator.addEventDetector(FieldEventDetector),FieldAbstractIntegratedPropagator.clearEventsDetectors()) - the binding logic with the rest of the application (
FieldAbstractPropagator.getMultiplexer())
From these configuration parameters, only the initial state is mandatory. The default propagation settings are in
equinoctialparameters withPositionAngleType.ECCENTRIClongitude argument. If the central attraction coefficient is not explicitly specified, the one used to define the initial orbit will be used. However, specifying only the initial state and perhaps the central attraction coefficient would mean the propagator would use only Keplerian forces. In this case, the simplerKeplerianPropagatorclass would perhaps be more effective.The underlying numerical integrator set up in the constructor may also have its own configuration parameters. Typical configuration parameters for adaptive stepsize integrators are the min, max and perhaps start step size as well as the absolute and/or relative errors thresholds.
The state that is seen by the integrator is a simple seven elements double array. The six first elements are either:
- the
equinoctial orbit parameters(a, ex, ey, hx, hy, λM or λE or λv) in meters and radians, - the
Keplerian orbit parameters(a, e, i, ω, Ω, M or E or v) in meters and radians, - the
circular orbit parameters(a, ex, ey, i, Ω, αM or αE or αv) in meters and radians, - the
Cartesian orbit parameters(x, y, z, vx, vy, vz) in meters and meters per seconds.
The following code snippet shows a typical setting for Low Earth Orbit propagation in equinoctial parameters and true longitude argument:
final T zero = field.getZero(); final T dP = zero.add(0.001); final T minStep = zero.add(0.001); final T maxStep = zero.add(500); final T initStep = zero.add(60); final double[][] tolerance = ToleranceProvider.getDefaultToleranceProvider(dP).getTolerances(orbit, OrbitType.EQUINOCTIAL); AdaptiveStepsizeFieldIntegrator<T> integrator = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep, tolerance[0], tolerance[1]); integrator.setInitialStepSize(initStep); propagator = new FieldNumericalPropagator<>(field, integrator);
By default, at the end of the propagation, the propagator resets the initial state to the final state, thus allowing a new propagation to be started from there without recomputing the part already performed. This behaviour can be changed by calling
FieldAbstractIntegratedPropagator.setResetAtEnd(boolean).Beware the same instance cannot be used simultaneously by different threads, the class is not thread-safe.
- Author:
- Mathieu Roméro, Luc Maisonobe, Guylaine Prat, Fabien Maussion, Véronique Pommier-Maurussane
- See Also:
FieldSpacecraftState,ForceModel,FieldOrekitStepHandler,FieldOrekitFixedStepHandler,FieldIntegratedEphemeris,FieldTimeDerivativesEquations
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.orekit.propagation.integration.FieldAbstractIntegratedPropagator
FieldAbstractIntegratedPropagator.MainStateEquations<T extends CalculusFieldElement<T>>
-
-
Field Summary
-
Fields inherited from interface org.orekit.propagation.FieldPropagator
DEFAULT_MASS
-
-
Constructor Summary
Constructors Constructor Description FieldNumericalPropagator(Field<T> field, FieldODEIntegrator<T> integrator)Create a new instance of NumericalPropagator, based on orbit definition mu.FieldNumericalPropagator(Field<T> field, FieldODEIntegrator<T> integrator, AttitudeProvider attitudeProvider)Create a new instance of NumericalPropagator, based on orbit definition mu.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description voidaddForceModel(ForceModel model)Add a force model to the global perturbation model.protected FieldStateMapper<T>createMapper(FieldAbsoluteDate<T> referenceDate, T mu, OrbitType orbitType, PositionAngleType positionAngleType, AttitudeProvider attitudeProvider, Frame frame)Create a mapper between raw double components and spacecraft state. /** Simple constructor.List<ForceModel>getAllForceModels()Get all the force models, perturbing forces and Newtonian attraction included.protected FieldAbstractIntegratedPropagator.MainStateEquations<T>getMainStateEquations(FieldODEIntegrator<T> integrator)Get the differential equations to integrate (for main state only).OrbitTypegetOrbitType()Get propagation parameter type.PositionAngleTypegetPositionAngleType()Get propagation parameter type.protected AttitudeProviderinitializeAttitudeProviderForDerivatives()Method called when initializing the attitude provider used when evaluating derivatives.voidremoveForceModels()Remove all perturbing force models from the global perturbation model.voidresetInitialState(FieldSpacecraftState<T> state)Reset the propagator initial state.voidsetIgnoreCentralAttraction(boolean ignoreCentralAttraction)Set the flag to ignore or not the creation of aNewtonianAttraction.voidsetInitialState(FieldSpacecraftState<T> initialState)Set the initial state.voidsetMu(T mu)Set the central attraction coefficient μ.voidsetOrbitType(OrbitType orbitType)Set propagation orbit type.voidsetPositionAngleType(PositionAngleType positionAngleType)Set position angle type.static <T extends CalculusFieldElement<T>>
double[][]tolerances(T dP, FieldOrbit<T> orbit, OrbitType type)Deprecated.since 13.0.static <T extends CalculusFieldElement<T>>
double[][]tolerances(T dP, T dV, FieldOrbit<T> orbit, OrbitType type)Deprecated.since 13.0.-
Methods inherited from class org.orekit.propagation.integration.FieldAbstractIntegratedPropagator
addAdditionalDerivativesProvider, addEventDetector, afterIntegration, beforeIntegration, clearEphemerisGenerators, clearEventsDetectors, getAdditionalDerivativesProviders, getBasicDimension, getCalls, getEphemerisGenerator, getEventDetectors, getFrozenAttitudeProvider, getInitialIntegrationState, getIntegrator, getIntegratorName, getManagedAdditionalData, getMu, getPropagationType, getResetAtEnd, initMapper, isAdditionalDataManaged, isMeanOrbit, propagate, propagate, resetInitialState, setAttitudeProvider, setResetAtEnd, setUpEventDetector, setUpUserEventDetectors
-
Methods inherited from class org.orekit.propagation.FieldAbstractPropagator
addAdditionalDataProvider, getAdditionalDataProviders, getAttitudeProvider, getField, getFrame, getInitialState, getMultiplexer, getStartDate, initializeAdditionalData, initializePropagation, removeAdditionalDataProvider, setStartDate, stateChanged, updateAdditionalData, updateUnmanagedData
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.orekit.propagation.FieldPropagator
clearStepHandlers, getPosition, getPVCoordinates, getVelocity, setStepHandler, setStepHandler
-
-
-
-
Constructor Detail
-
FieldNumericalPropagator
@DefaultDataContext public FieldNumericalPropagator(Field<T> field, FieldODEIntegrator<T> integrator)
Create a new instance of NumericalPropagator, based on orbit definition mu. After creation, the instance is empty, i.e. the attitude provider is set to an unspecified default law and there are no perturbing forces at all. This means that ifaddForceModelis not called after creation, the integrated orbit will follow a Keplerian evolution only. The defaults areOrbitType.EQUINOCTIALforpropagation orbit typeandPositionAngleType.ECCENTRICforposition angle type.This constructor uses the
default data context.- Parameters:
integrator- numerical integrator to use for propagation.field- Field used by default- See Also:
FieldNumericalPropagator(Field, FieldODEIntegrator, AttitudeProvider)
-
FieldNumericalPropagator
public FieldNumericalPropagator(Field<T> field, FieldODEIntegrator<T> integrator, AttitudeProvider attitudeProvider)
Create a new instance of NumericalPropagator, based on orbit definition mu. After creation, the instance is empty, i.e. the attitude provider is set to an unspecified default law and there are no perturbing forces at all. This means that ifaddForceModelis not called after creation, the integrated orbit will follow a Keplerian evolution only. The defaults areOrbitType.EQUINOCTIALforpropagation orbit typeandPositionAngleType.ECCENTRICforposition angle type.- Parameters:
field- Field used by defaultintegrator- numerical integrator to use for propagation.attitudeProvider- attitude law to use.- Since:
- 10.1
-
-
Method Detail
-
setIgnoreCentralAttraction
public void setIgnoreCentralAttraction(boolean ignoreCentralAttraction)
Set the flag to ignore or not the creation of aNewtonianAttraction.- Parameters:
ignoreCentralAttraction- if true,NewtonianAttractionis not added automatically if missing
-
setMu
public void setMu(T mu)
Set the central attraction coefficient μ.Setting the central attraction coefficient is equivalent to
addaNewtonianAttractionforce model.- Overrides:
setMuin classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Parameters:
mu- central attraction coefficient (m³/s²)- See Also:
addForceModel(ForceModel),getAllForceModels()
-
addForceModel
public void addForceModel(ForceModel model)
Add a force model to the global perturbation model.If this method is not called at all, the integrated orbit will follow a Keplerian evolution only.
- Parameters:
model- perturbingForceModelto add- See Also:
removeForceModels(),setMu(CalculusFieldElement)
-
removeForceModels
public void removeForceModels()
Remove all perturbing force models from the global perturbation model.Once all perturbing forces have been removed (and as long as no new force model is added), the integrated orbit will follow a Keplerian evolution only.
- See Also:
addForceModel(ForceModel)
-
getAllForceModels
public List<ForceModel> getAllForceModels()
Get all the force models, perturbing forces and Newtonian attraction included.- Returns:
- list of perturbing force models, with Newtonian attraction being the last one
- Since:
- 9.1
- See Also:
addForceModel(ForceModel),setMu(CalculusFieldElement)
-
setOrbitType
public void setOrbitType(OrbitType orbitType)
Set propagation orbit type.- Overrides:
setOrbitTypein classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Parameters:
orbitType- orbit type to use for propagation
-
getOrbitType
public OrbitType getOrbitType()
Get propagation parameter type.- Overrides:
getOrbitTypein classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Returns:
- orbit type used for propagation
-
setPositionAngleType
public void setPositionAngleType(PositionAngleType positionAngleType)
Set position angle type.The position parameter type is meaningful only if
propagation orbit typesupport it. As an example, it is not meaningful for propagation inCartesianparameters.- Overrides:
setPositionAngleTypein classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Parameters:
positionAngleType- angle type to use for propagation
-
getPositionAngleType
public PositionAngleType getPositionAngleType()
Get propagation parameter type.- Overrides:
getPositionAngleTypein classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Returns:
- angle type to use for propagation
-
setInitialState
public void setInitialState(FieldSpacecraftState<T> initialState)
Set the initial state.- Parameters:
initialState- initial state
-
resetInitialState
public void resetInitialState(FieldSpacecraftState<T> state)
Reset the propagator initial state.- Specified by:
resetInitialStatein interfaceFieldPropagator<T extends CalculusFieldElement<T>>- Overrides:
resetInitialStatein classFieldAbstractPropagator<T extends CalculusFieldElement<T>>- Parameters:
state- new initial state to consider
-
initializeAttitudeProviderForDerivatives
protected AttitudeProvider initializeAttitudeProviderForDerivatives()
Method called when initializing the attitude provider used when evaluating derivatives.- Overrides:
initializeAttitudeProviderForDerivativesin classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Returns:
- attitude provider for derivatives
-
createMapper
protected FieldStateMapper<T> createMapper(FieldAbsoluteDate<T> referenceDate, T mu, OrbitType orbitType, PositionAngleType positionAngleType, AttitudeProvider attitudeProvider, Frame frame)
Create a mapper between raw double components and spacecraft state. /** Simple constructor.The position parameter type is meaningful only if
propagation orbit typesupport it. As an example, it is not meaningful for propagation inCartesianparameters.- Specified by:
createMapperin classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Parameters:
referenceDate- reference datemu- central attraction coefficient (m³/s²)orbitType- orbit type to use for mappingpositionAngleType- angle type to use for propagationattitudeProvider- attitude providerframe- inertial frame- Returns:
- new mapper
-
getMainStateEquations
protected FieldAbstractIntegratedPropagator.MainStateEquations<T> getMainStateEquations(FieldODEIntegrator<T> integrator)
Get the differential equations to integrate (for main state only).- Specified by:
getMainStateEquationsin classFieldAbstractIntegratedPropagator<T extends CalculusFieldElement<T>>- Parameters:
integrator- numerical integrator to use for propagation.- Returns:
- differential equations for main state
-
tolerances
@Deprecated public static <T extends CalculusFieldElement<T>> double[][] tolerances(T dP, FieldOrbit<T> orbit, OrbitType type)
Deprecated.since 13.0. UseToleranceProviderfor default and custom tolerances.Estimate tolerance vectors for integrators.The errors are estimated from partial derivatives properties of orbits, starting from a scalar position error specified by the user. Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)), we get at constant energy (i.e. on a Keplerian trajectory):
V r² |dV| = mu |dr|
So we deduce a scalar velocity error consistent with the position error. From here, we apply orbits Jacobians matrices to get consistent errors on orbital parameters.The tolerances are only orders of magnitude, and integrator tolerances are only local estimates, not global ones. So some care must be taken when using these tolerances. Setting 1mm as a position error does NOT mean the tolerances will guarantee a 1mm error position after several orbits integration.
- Type Parameters:
T- elements type- Parameters:
dP- user specified position errororbit- reference orbittype- propagation type for the meaning of the tolerance vectors elements (it may be different fromorbit.getType())- Returns:
- a two rows array, row 0 being the absolute tolerance error and row 1 being the relative tolerance error
-
tolerances
@Deprecated public static <T extends CalculusFieldElement<T>> double[][] tolerances(T dP, T dV, FieldOrbit<T> orbit, OrbitType type)
Deprecated.since 13.0. UseToleranceProviderfor default and custom tolerances.Estimate tolerance vectors for integrators when propagating in orbits.The errors are estimated from partial derivatives properties of orbits, starting from scalar position and velocity errors specified by the user.
The tolerances are only orders of magnitude, and integrator tolerances are only local estimates, not global ones. So some care must be taken when using these tolerances. Setting 1mm as a position error does NOT mean the tolerances will guarantee a 1mm error position after several orbits integration.
- Type Parameters:
T- elements type- Parameters:
dP- user specified position errordV- user specified velocity errororbit- reference orbittype- propagation type for the meaning of the tolerance vectors elements (it may be different fromorbit.getType())- Returns:
- a two rows array, row 0 being the absolute tolerance error and row 1 being the relative tolerance error
- Since:
- 10.3
-
-