1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.frames;
18  
19  import java.util.function.BiFunction;
20  import java.util.function.Function;
21  
22  import org.hipparchus.CalculusFieldElement;
23  import org.hipparchus.FieldElement;
24  import org.orekit.errors.OrekitIllegalArgumentException;
25  import org.orekit.errors.OrekitMessages;
26  import org.orekit.time.AbsoluteDate;
27  import org.orekit.time.FieldAbsoluteDate;
28  
29  
30  /** Tridimensional references frames class.
31   *
32   * <h2> Frame Presentation </h2>
33   * <p>This class is the base class for all frames in OREKIT. The frames are
34   * linked together in a tree with some specific frame chosen as the root of the tree.
35   * Each frame is defined by {@link Transform transforms} combining any number
36   * of translations and rotations from a reference frame which is its
37   * parent frame in the tree structure.</p>
38   * <p>When we say a {@link Transform transform} t is <em>from frame<sub>A</sub>
39   * to frame<sub>B</sub></em>, we mean that if the coordinates of some absolute
40   * vector (say the direction of a distant star for example) has coordinates
41   * u<sub>A</sub> in frame<sub>A</sub> and u<sub>B</sub> in frame<sub>B</sub>,
42   * then u<sub>B</sub>={@link
43   * Transform#transformVector(org.hipparchus.geometry.euclidean.threed.Vector3D)
44   * t.transformVector(u<sub>A</sub>)}.
45   * <p>The transforms may be constant or varying, depending on the implementation of
46   * the {@link TransformProvider transform provider} used to define the frame. For simple
47   * fixed transforms, using {@link FixedTransformProvider} is sufficient. For varying
48   * transforms (time-dependent or telemetry-based for example), it may be useful to define
49   * specific implementations of {@link TransformProvider transform provider}.</p>
50   *
51   * @author Guylaine Prat
52   * @author Luc Maisonobe
53   * @author Pascal Parraud
54   */
55  public class Frame {
56  
57      /** Parent frame (only the root frame doesn't have a parent). */
58      private final Frame parent;
59  
60      /** Depth of the frame with respect to tree root. */
61      private final int depth;
62  
63      /** Provider for transform from parent frame to instance. */
64      private final TransformProvider transformProvider;
65  
66      /** Instance name. */
67      private final String name;
68  
69      /** Indicator for pseudo-inertial frames. */
70      private final boolean pseudoInertial;
71  
72      /** Private constructor used only for the root frame.
73       * @param name name of the frame
74       * @param pseudoInertial true if frame is considered pseudo-inertial
75       * (i.e. suitable for propagating orbit)
76       */
77      private Frame(final String name, final boolean pseudoInertial) {
78          parent              = null;
79          depth               = 0;
80          transformProvider   = new FixedTransformProvider(Transform.IDENTITY);
81          this.name           = name;
82          this.pseudoInertial = pseudoInertial;
83      }
84  
85      /** Build a non-inertial frame from its transform with respect to its parent.
86       * <p>calling this constructor is equivalent to call
87       * <code>{link {@link #Frame(Frame, Transform, String, boolean)
88       * Frame(parent, transform, name, false)}</code>.</p>
89       * @param parent parent frame (must be non-null)
90       * @param transform transform from parent frame to instance
91       * @param name name of the frame
92       * @exception IllegalArgumentException if the parent frame is null
93       */
94      public Frame(final Frame parent, final Transform transform, final String name)
95          throws IllegalArgumentException {
96          this(parent, transform, name, false);
97      }
98  
99      /** Build a non-inertial frame from its transform with respect to its parent.
100      * <p>calling this constructor is equivalent to call
101      * <code>{link {@link #Frame(Frame, Transform, String, boolean)
102      * Frame(parent, transform, name, false)}</code>.</p>
103      * @param parent parent frame (must be non-null)
104      * @param transformProvider provider for transform from parent frame to instance
105      * @param name name of the frame
106      * @exception IllegalArgumentException if the parent frame is null
107      */
108     public Frame(final Frame parent, final TransformProvider transformProvider, final String name)
109         throws IllegalArgumentException {
110         this(parent, transformProvider, name, false);
111     }
112 
113     /** Build a frame from its transform with respect to its parent.
114      * <p>The convention for the transform is that it is from parent
115      * frame to instance. This means that the two following frames
116      * are similar:</p>
117      * <pre>
118      * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2));
119      * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2);
120      * </pre>
121      * @param parent parent frame (must be non-null)
122      * @param transform transform from parent frame to instance
123      * @param name name of the frame
124      * @param pseudoInertial true if frame is considered pseudo-inertial
125      * (i.e. suitable for propagating orbit)
126      * @exception IllegalArgumentException if the parent frame is null
127      */
128     public Frame(final Frame parent, final Transform transform, final String name,
129                  final boolean pseudoInertial)
130         throws IllegalArgumentException {
131         this(parent, new FixedTransformProvider(transform), name, pseudoInertial);
132     }
133 
134     /** Build a frame from its transform with respect to its parent.
135      * <p>The convention for the transform is that it is from parent
136      * frame to instance. This means that the two following frames
137      * are similar:</p>
138      * <pre>
139      * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2));
140      * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2);
141      * </pre>
142      * @param parent parent frame (must be non-null)
143      * @param transformProvider provider for transform from parent frame to instance
144      * @param name name of the frame
145      * @param pseudoInertial true if frame is considered pseudo-inertial
146      * (i.e. suitable for propagating orbit)
147      * @exception IllegalArgumentException if the parent frame is null
148      */
149     public Frame(final Frame parent, final TransformProvider transformProvider, final String name,
150                  final boolean pseudoInertial)
151         throws IllegalArgumentException {
152 
153         if (parent == null) {
154             throw new OrekitIllegalArgumentException(OrekitMessages.NULL_PARENT_FOR_FRAME, name);
155         }
156         this.parent            = parent;
157         this.depth             = parent.depth + 1;
158         this.transformProvider = transformProvider;
159         this.name              = name;
160         this.pseudoInertial    = pseudoInertial;
161 
162     }
163 
164     /** Get the name.
165      * @return the name
166      */
167     public String getName() {
168         return this.name;
169     }
170 
171     /** Check if the frame is pseudo-inertial.
172      * <p>Pseudo-inertial frames are frames that do have a linear motion and
173      * either do not rotate or rotate at a very low rate resulting in
174      * neglectible inertial forces. This means they are suitable for orbit
175      * definition and propagation using Newtonian mechanics. Frames that are
176      * <em>not</em> pseudo-inertial are <em>not</em> suitable for orbit
177      * definition and propagation.</p>
178      * @return true if frame is pseudo-inertial
179      */
180     public boolean isPseudoInertial() {
181         return pseudoInertial;
182     }
183 
184     /** New definition of the java.util toString() method.
185      * @return the name
186      */
187     public String toString() {
188         return this.name;
189     }
190 
191     /** Get the parent frame.
192      * @return parent frame
193      */
194     public Frame getParent() {
195         return parent;
196     }
197 
198     /** Get the depth of the frame.
199      * <p>
200      * The depth of a frame is the number of parents frame between
201      * it and the frames tree root. It is 0 for the root frame, and
202      * the depth of a frame is the depth of its parent frame plus one.
203      * </p>
204      * @return depth of the frame
205      */
206     public int getDepth() {
207         return depth;
208     }
209 
210     /** Get the n<sup>th</sup> ancestor of the frame.
211      * @param n index of the ancestor (0 is the instance, 1 is its parent,
212      * 2 is the parent of its parent...)
213      * @return n<sup>th</sup> ancestor of the frame (must be between 0
214      * and the depth of the frame)
215      * @exception IllegalArgumentException if n is larger than the depth
216      * of the instance
217      */
218     public Frame getAncestor(final int n) throws IllegalArgumentException {
219 
220         // safety check
221         if (n > depth) {
222             throw new OrekitIllegalArgumentException(OrekitMessages.FRAME_NO_NTH_ANCESTOR,
223                                                      name, depth, n);
224         }
225 
226         // go upward to find ancestor
227         Frame current = this;
228         for (int i = 0; i < n; ++i) {
229             current = current.parent;
230         }
231 
232         return current;
233 
234     }
235 
236     /** Get the transform from the instance to another frame.
237      * @param destination destination frame to which we want to transform vectors
238      * @param date the date (can be null if it is sure than no date dependent frame is used)
239      * @return transform from the instance to the destination frame
240      */
241     public Transform getTransformTo(final Frame destination, final AbsoluteDate date) {
242         return getTransformTo(
243                 destination,
244                 Transform.IDENTITY,
245                 frame -> frame.getTransformProvider().getTransform(date),
246                 (t1, t2) -> new Transform(date, t1, t2),
247                 Transform::getInverse);
248     }
249 
250     /** Get the transform from the instance to another frame.
251      * @param destination destination frame to which we want to transform vectors
252      * @param date the date (<em>must</em> be non-null, which is a more stringent condition
253      *      *                than in {@link #getTransformTo(Frame, FieldAbsoluteDate)})
254      * @param <T> the type of the field elements
255      * @return transform from the instance to the destination frame
256      */
257     public <T extends CalculusFieldElement<T>> FieldTransform<T> getTransformTo(final Frame destination,
258                                                                                 final FieldAbsoluteDate<T> date) {
259         if (date.hasZeroField()) {
260             return new FieldTransform<>(date.getField(), getTransformTo(destination, date.toAbsoluteDate()));
261         }
262         return getTransformTo(destination,
263                               FieldTransform.getIdentity(date.getField()),
264                               frame -> frame.getTransformProvider().getTransform(date),
265                               (t1, t2) -> new FieldTransform<>(date, t1, t2),
266                               FieldTransform::getInverse);
267     }
268 
269     /**
270      * Get the kinematic portion of the transform from the instance to another
271      * frame. The returned transform is kinematic in the sense that it includes
272      * translations and rotations, with rates, but cannot transform an acceleration vector.
273      *
274      * <p>This method is often more performant than {@link
275      * #getTransformTo(Frame, AbsoluteDate)} when accelerations are not needed.
276      *
277      * @param destination destination frame to which we want to transform
278      *                    vectors
279      * @param date        the date (can be null if it is sure than no date
280      *                    dependent frame is used)
281      * @return kinematic transform from the instance to the destination frame
282      * @since 12.1
283      */
284     public KinematicTransform getKinematicTransformTo(final Frame destination, final AbsoluteDate date) {
285         return getTransformTo(
286             destination,
287             KinematicTransform.getIdentity(),
288             frame -> frame.getTransformProvider().getKinematicTransform(date),
289             (t1, t2) -> KinematicTransform.compose(date, t1, t2),
290             KinematicTransform::getInverse);
291     }
292 
293     /**
294      * Get the static portion of the transform from the instance to another
295      * frame. The returned transform is static in the sense that it includes
296      * translations and rotations, but not rates.
297      *
298      * <p>This method is often more performant than {@link
299      * #getTransformTo(Frame, AbsoluteDate)} when rates are not needed.
300      *
301      * @param destination destination frame to which we want to transform
302      *                    vectors
303      * @param date        the date (can be null if it is sure than no date
304      *                    dependent frame is used)
305      * @return static transform from the instance to the destination frame
306      * @since 11.2
307      */
308     public StaticTransform getStaticTransformTo(final Frame destination,
309                                                 final AbsoluteDate date) {
310         return getTransformTo(
311                 destination,
312                 StaticTransform.getIdentity(),
313                 frame -> frame.getTransformProvider().getStaticTransform(date),
314                 (t1, t2) -> StaticTransform.compose(date, t1, t2),
315                 StaticTransform::getInverse);
316     }
317 
318     /**
319      * Get the static portion of the transform from the instance to another
320      * frame. The returned transform is static in the sense that it includes
321      * translations and rotations, but not rates.
322      *
323      * <p>This method is often more performant than {@link
324      * #getTransformTo(Frame, FieldAbsoluteDate)} when rates are not needed.
325      *
326      * <p>A first check is made on the FieldAbsoluteDate because "fielded" transforms have low-performance.<br>
327      * The date field is checked with {@link FieldElement#isZero()}.<br>
328      * If true, the un-fielded version of the transform computation is used.
329      *
330      * @param <T>         type of the elements
331      * @param destination destination frame to which we want to transform
332      *                    vectors
333      * @param date        the date (<em>must</em> be non-null, which is a more stringent condition
334      *                    than in {@link #getStaticTransformTo(Frame, AbsoluteDate)})
335      * @return static transform from the instance to the destination frame
336      * @since 12.0
337      */
338     public <T extends CalculusFieldElement<T>> FieldStaticTransform<T> getStaticTransformTo(final Frame destination,
339                                                 final FieldAbsoluteDate<T> date) {
340         if (date.hasZeroField()) {
341             // If date field is Zero, then use the un-fielded version for performances
342             return FieldStaticTransform.of(date, getStaticTransformTo(destination, date.toAbsoluteDate()));
343 
344         } else {
345             // Use classic fielded function
346             return getTransformTo(destination,
347                                   FieldStaticTransform.getIdentity(date.getField()),
348                                   frame -> frame.getTransformProvider().getStaticTransform(date),
349                                   (t1, t2) -> FieldStaticTransform.compose(date, t1, t2),
350                                   FieldStaticTransform::getInverse);
351         }
352     }
353 
354     /**
355      * Get the kinematic portion of the transform from the instance to another
356      * frame. The returned transform is kinematic in the sense that it includes
357      * translations and rotations, with rates, but cannot transform an acceleration vector.
358      *
359      * <p>This method is often more performant than {@link
360      * #getTransformTo(Frame, AbsoluteDate)} when accelerations are not needed.
361      * @param <T>          Type of transform returned.
362      * @param destination destination frame to which we want to transform
363      *                    vectors
364      * @param date        the date (<em>must</em> be non-null, which is a more stringent condition
365      *      *                    than in {@link #getKinematicTransformTo(Frame, AbsoluteDate)})
366      * @return kinematic transform from the instance to the destination frame
367      * @since 12.1
368      */
369     public <T extends CalculusFieldElement<T>> FieldKinematicTransform<T> getKinematicTransformTo(final Frame destination,
370                                                                                                   final FieldAbsoluteDate<T> date) {
371         if (date.hasZeroField()) {
372             // If date field is Zero, then use the un-fielded version for performances
373             final KinematicTransform kinematicTransform = getKinematicTransformTo(destination, date.toAbsoluteDate());
374             return FieldKinematicTransform.of(date.getField(), kinematicTransform);
375 
376         } else {
377             // Use classic fielded function
378             return getTransformTo(destination,
379                     FieldKinematicTransform.getIdentity(date.getField()),
380                     frame -> frame.getTransformProvider().getKinematicTransform(date),
381                     (t1, t2) -> FieldKinematicTransform.compose(date, t1, t2),
382                     FieldKinematicTransform::getInverse);
383         }
384     }
385 
386     /**
387      * Generic get transform method that builds the transform from {@code this}
388      * to {@code destination}.
389      *
390      * @param destination  destination frame to which we want to transform
391      *                     vectors
392      * @param identity     transform of the given type.
393      * @param getTransform method to get a transform from a frame.
394      * @param compose      method to combine two transforms.
395      * @param inverse      method to invert a transform.
396      * @param <T>          Type of transform returned.
397      * @return composite transform.
398      */
399     private <T> T getTransformTo(final Frame destination,
400                                  final T identity,
401                                  final Function<Frame, T> getTransform,
402                                  final BiFunction<T, T, T> compose,
403                                  final Function<T, T> inverse) {
404 
405         if (this == destination) {
406             // shortcut for special case that may be frequent
407             return identity;
408         }
409 
410         // common ancestor to both frames in the frames tree
411         final Frame common = findCommon(this, destination);
412 
413         // transform from common to instance
414         T commonToInstance = identity;
415         for (Frame frame = this; frame != common; frame = frame.parent) {
416             commonToInstance = compose.apply(getTransform.apply(frame), commonToInstance);
417         }
418 
419         // transform from destination up to common
420         T commonToDestination = identity;
421         for (Frame frame = destination; frame != common; frame = frame.parent) {
422             commonToDestination = compose.apply(getTransform.apply(frame), commonToDestination);
423         }
424 
425         // transform from instance to destination via common
426         return compose.apply(inverse.apply(commonToInstance), commonToDestination);
427 
428     }
429 
430     /** Get the provider for transform from parent frame to instance.
431      * @return provider for transform from parent frame to instance
432      */
433     public TransformProvider getTransformProvider() {
434         return transformProvider;
435     }
436 
437     /** Find the deepest common ancestor of two frames in the frames tree.
438      * @param from origin frame
439      * @param to destination frame
440      * @return an ancestor frame of both <code>from</code> and <code>to</code>
441      */
442     private static Frame findCommon(final Frame from, final Frame to) {
443 
444         // select deepest frames that could be the common ancestor
445         Frame currentF = from.depth > to.depth ? from.getAncestor(from.depth - to.depth) : from;
446         Frame currentT = from.depth > to.depth ? to : to.getAncestor(to.depth - from.depth);
447 
448         // go upward until we find a match
449         while (currentF != currentT) {
450             currentF = currentF.parent;
451             currentT = currentT.parent;
452         }
453 
454         return currentF;
455 
456     }
457 
458     /** Determine if a Frame is a child of another one.
459      * @param potentialAncestor supposed ancestor frame
460      * @return true if the potentialAncestor belongs to the
461      * path from instance to the root frame, excluding itself
462      */
463     public boolean isChildOf(final Frame potentialAncestor) {
464         if (depth <= potentialAncestor.depth) {
465             return false;
466         }
467         return getAncestor(depth - potentialAncestor.depth) == potentialAncestor;
468     }
469 
470     /** Get the unique root frame.
471      * @return the unique instance of the root frame
472      */
473     public static Frame getRoot() {
474         return LazyRootHolder.INSTANCE;
475     }
476 
477     /** Get a new version of the instance, frozen with respect to a reference frame.
478      * <p>
479      * Freezing a frame consist in computing its position and orientation with respect
480      * to another frame at some freezing date and fixing them so they do not depend
481      * on time anymore. This means the frozen frame is fixed with respect to the
482      * reference frame.
483      * </p>
484      * <p>
485      * One typical use of this method is to compute an inertial launch reference frame
486      * by freezing a {@link TopocentricFrame topocentric frame} at launch date
487      * with respect to an inertial frame. Another use is to freeze an equinox-related
488      * celestial frame at a reference epoch date.
489      * </p>
490      * <p>
491      * Only the frame returned by this method is frozen, the instance by itself
492      * is not affected by calling this method and still moves freely.
493      * </p>
494      * @param reference frame with respect to which the instance will be frozen
495      * @param freezingDate freezing date
496      * @param frozenName name of the frozen frame
497      * @return a frozen version of the instance
498      */
499     public Frame getFrozenFrame(final Frame reference, final AbsoluteDate freezingDate,
500                                 final String frozenName) {
501         return new Frame(reference, reference.getTransformTo(this, freezingDate).freeze(),
502                          frozenName, reference.isPseudoInertial());
503     }
504 
505     // We use the Initialization on demand holder idiom to store
506     // the singletons, as it is both thread-safe, efficient (no
507     // synchronization) and works with all versions of java.
508 
509     /** Holder for the root frame singleton. */
510     private static class LazyRootHolder {
511 
512         /** Unique instance. */
513         private static final Frame INSTANCE = new Frame(Predefined.GCRF.getName(), true) { };
514 
515         /** Private constructor.
516          * <p>This class is a utility class, it should neither have a public
517          * nor a default constructor. This private constructor prevents
518          * the compiler from generating one automatically.</p>
519          */
520         private LazyRootHolder() {
521         }
522 
523     }
524 
525 }