1   /* Copyright 2002-2022 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.forces;
18  
19  import java.util.List;
20  import java.util.stream.Stream;
21  
22  import org.hipparchus.CalculusFieldElement;
23  import org.hipparchus.Field;
24  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
25  import org.hipparchus.geometry.euclidean.threed.Vector3D;
26  import org.hipparchus.util.MathArrays;
27  import org.orekit.propagation.FieldSpacecraftState;
28  import org.orekit.propagation.SpacecraftState;
29  import org.orekit.propagation.events.EventDetector;
30  import org.orekit.propagation.events.FieldEventDetector;
31  import org.orekit.propagation.numerical.FieldTimeDerivativesEquations;
32  import org.orekit.propagation.numerical.TimeDerivativesEquations;
33  import org.orekit.time.AbsoluteDate;
34  import org.orekit.time.FieldAbsoluteDate;
35  import org.orekit.utils.ParameterDriver;
36  
37  /** This interface represents a force modifying spacecraft motion.
38   *
39   * <p>
40   * Objects implementing this interface are intended to be added to a
41   * {@link org.orekit.propagation.numerical.NumericalPropagator numerical propagator}
42   * before the propagation is started.
43   *
44   * <p>
45   * The propagator will call at each step the {@link #addContribution(SpacecraftState,
46   * TimeDerivativesEquations)} method. The force model instance will extract all the
47   * state data it needs (date, position, velocity, frame, attitude, mass) from the first
48   * parameter. From these state data, it will compute the perturbing acceleration. It
49   * will then add this acceleration to the second parameter which will take thins
50   * contribution into account and will use the Gauss equations to evaluate its impact
51   * on the global state derivative.
52   * </p>
53   * <p>
54   * Force models which create discontinuous acceleration patterns (typically for maneuvers
55   * start/stop or solar eclipses entry/exit) must provide one or more {@link
56   * org.orekit.propagation.events.EventDetector events detectors} to the
57   * propagator thanks to their {@link #getEventsDetectors()} method. This method
58   * is called once just before propagation starts. The events states will be checked by
59   * the propagator to ensure accurate propagation and proper events handling.
60   * </p>
61   *
62   * @author Mathieu Rom&eacute;ro
63   * @author Luc Maisonobe
64   * @author V&eacute;ronique Pommier-Maurussane
65   */
66  public interface ForceModel {
67  
68      /**
69       * Initialize the force model at the start of propagation. This method will be called
70       * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
71       * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
72       * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
73       *
74       * <p> The default implementation of this method does nothing.</p>
75       *
76       * @param initialState spacecraft state at the start of propagation.
77       * @param target       date of propagation. Not equal to {@code initialState.getDate()}.
78       */
79      default void init(SpacecraftState initialState, AbsoluteDate target) {
80      }
81  
82      /**
83       * Initialize the force model at the start of propagation. This method will be called
84       * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
85       * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
86       * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
87       *
88       * <p> The default implementation of this method does nothing.</p>
89       *
90       * @param initialState spacecraft state at the start of propagation.
91       * @param target       date of propagation. Not equal to {@code initialState.getDate()}.
92       * @param <T> type of the elements
93       */
94      default <T extends CalculusFieldElement<T>> void init(FieldSpacecraftState<T> initialState, FieldAbsoluteDate<T> target) {
95          init(initialState.toSpacecraftState(), target.toAbsoluteDate());
96      }
97  
98      /** Compute the contribution of the force model to the perturbing
99       * acceleration.
100      * <p>
101      * The default implementation simply adds the {@link #acceleration(SpacecraftState, double[]) acceleration}
102      * as a non-Keplerian acceleration.
103      * </p>
104      * @param s current state information: date, kinematics, attitude
105      * @param adder object where the contribution should be added
106      */
107     default void addContribution(SpacecraftState s, TimeDerivativesEquations adder) {
108         adder.addNonKeplerianAcceleration(acceleration(s, getParameters()));
109     }
110 
111     /** Compute the contribution of the force model to the perturbing
112      * acceleration.
113      * @param s current state information: date, kinematics, attitude
114      * @param adder object where the contribution should be added
115      * @param <T> type of the elements
116      */
117     default <T extends CalculusFieldElement<T>> void addContribution(FieldSpacecraftState<T> s, FieldTimeDerivativesEquations<T> adder) {
118         adder.addNonKeplerianAcceleration(acceleration(s, getParameters(s.getDate().getField())));
119     }
120 
121     /** Get force model parameters.
122      * @return force model parameters
123      * @since 9.0
124      */
125     default double[] getParameters() {
126         final List<ParameterDriver> drivers = getParametersDrivers();
127         final double[] parameters = new double[drivers.size()];
128         for (int i = 0; i < drivers.size(); ++i) {
129             parameters[i] = drivers.get(i).getValue();
130         }
131         return parameters;
132     }
133 
134     /** Get force model parameters.
135      * @param field field to which the elements belong
136      * @param <T> type of the elements
137      * @return force model parameters
138      * @since 9.0
139      */
140     default <T extends CalculusFieldElement<T>> T[] getParameters(final Field<T> field) {
141         final List<ParameterDriver> drivers = getParametersDrivers();
142         final T[] parameters = MathArrays.buildArray(field, drivers.size());
143         for (int i = 0; i < drivers.size(); ++i) {
144             parameters[i] = field.getZero().add(drivers.get(i).getValue());
145         }
146         return parameters;
147     }
148 
149     /** Check if force models depends on position only.
150      * @return true if force model depends on position only, false
151      * if it depends on velocity, either directly or due to a dependency
152      * on attitude
153      * @since 9.0
154      */
155     boolean dependsOnPositionOnly();
156 
157     /** Compute acceleration.
158      * @param s current state information: date, kinematics, attitude
159      * @param parameters values of the force model parameters
160      * @return acceleration in same frame as state
161      * @since 9.0
162      */
163     Vector3D acceleration(SpacecraftState s, double[] parameters);
164 
165     /** Compute acceleration.
166      * @param s current state information: date, kinematics, attitude
167      * @param parameters values of the force model parameters
168      * @return acceleration in same frame as state
169      * @param <T> type of the elements
170      * @since 9.0
171      */
172     <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(FieldSpacecraftState<T> s, T[] parameters);
173 
174     /** Get the discrete events related to the model.
175      * @return stream of events detectors
176      */
177     Stream<EventDetector> getEventsDetectors();
178 
179     /** Get the discrete events related to the model.
180      * @param field field to which the state belongs
181      * @param <T> extends CalculusFieldElement&lt;T&gt;
182      * @return stream of events detectors
183      */
184     <T extends CalculusFieldElement<T>> Stream<FieldEventDetector<T>> getFieldEventsDetectors(Field<T> field);
185 
186     /** Get the drivers for force model parameters.
187      * @return drivers for force model parameters
188      * @since 8.0
189      */
190     List<ParameterDriver> getParametersDrivers();
191 
192     /** Get parameter value from its name.
193      * @param name parameter name
194      * @return parameter value
195      * @since 8.0
196      */
197     ParameterDriver getParameterDriver(String name);
198 
199     /** Check if a parameter is supported.
200      * <p>Supported parameters are those listed by {@link #getParametersDrivers()}.</p>
201      * @param name parameter name to check
202      * @return true if the parameter is supported
203      * @see #getParametersDrivers()
204      */
205     boolean isSupported(String name);
206 
207 }