1 /* Copyright 2002-2022 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.attitudes; 18 19 import org.hipparchus.CalculusFieldElement; 20 import org.hipparchus.geometry.euclidean.threed.FieldRotation; 21 import org.hipparchus.geometry.euclidean.threed.Rotation; 22 import org.hipparchus.geometry.euclidean.threed.RotationConvention; 23 import org.hipparchus.geometry.euclidean.threed.RotationOrder; 24 import org.orekit.errors.OrekitException; 25 import org.orekit.errors.OrekitMessages; 26 import org.orekit.frames.FieldTransform; 27 import org.orekit.frames.Frame; 28 import org.orekit.frames.LOFType; 29 import org.orekit.frames.Transform; 30 import org.orekit.time.AbsoluteDate; 31 import org.orekit.time.FieldAbsoluteDate; 32 import org.orekit.utils.FieldPVCoordinates; 33 import org.orekit.utils.FieldPVCoordinatesProvider; 34 import org.orekit.utils.PVCoordinates; 35 import org.orekit.utils.PVCoordinatesProvider; 36 37 38 /** 39 * Attitude law defined by fixed Roll, Pitch and Yaw angles (in any order) 40 * with respect to a local orbital frame. 41 42 * <p> 43 * The attitude provider is defined as a rotation offset from some local orbital frame. 44 * @author Véronique Pommier-Maurussane 45 */ 46 public class LofOffset implements AttitudeProvider { 47 48 /** Type of Local Orbital Frame. */ 49 private LOFType type; 50 51 /** Rotation from local orbital frame. */ 52 private final Rotation offset; 53 54 /** Inertial frame with respect to which orbit should be computed. */ 55 private final Frame inertialFrame; 56 57 /** Create a LOF-aligned attitude. 58 * <p> 59 * Calling this constructor is equivalent to call 60 * {@code LofOffset(inertialFrame, LOFType, RotationOrder.XYZ, 0, 0, 0)} 61 * </p> 62 * @param inertialFrame inertial frame with respect to which orbit should be computed 63 * @param type type of Local Orbital Frame 64 */ 65 public LofOffset(final Frame inertialFrame, final LOFType type) { 66 this(inertialFrame, type, RotationOrder.XYZ, 0, 0, 0); 67 } 68 69 /** Creates new instance. 70 * <p> 71 * An important thing to note is that the rotation order and angles signs used here 72 * are compliant with an <em>attitude</em> definition, i.e. they correspond to 73 * a frame that rotate in a field of fixed vectors. So to retrieve the angles 74 * provided here from the Hipparchus underlying rotation, one has to either use the 75 * {@link RotationConvention#VECTOR_OPERATOR} and <em>revert</em> the rotation, or 76 * to use {@link RotationConvention#FRAME_TRANSFORM} as in the following code snippet: 77 * </p> 78 * <pre> 79 * LofOffset law = new LofOffset(inertial, lofType, order, alpha1, alpha2, alpha3); 80 * Rotation offsetAtt = law.getAttitude(orbit).getRotation(); 81 * Rotation alignedAtt = new LofOffset(inertial, lofType).getAttitude(orbit).getRotation(); 82 * Rotation offsetProper = offsetAtt.compose(alignedAtt.revert(), RotationConvention.VECTOR_OPERATOR); 83 * 84 * // note the call to revert and the conventions in the following statement 85 * double[] anglesV = offsetProper.revert().getAngles(order, RotationConvention.VECTOR_OPERATOR); 86 * System.out.format(Locale.US, "%f == %f%n", alpha1, anglesV[0]); 87 * System.out.format(Locale.US, "%f == %f%n", alpha2, anglesV[1]); 88 * System.out.format(Locale.US, "%f == %f%n", alpha3, anglesV[2]); 89 * 90 * // note the conventions in the following statement 91 * double[] anglesF = offsetProper.getAngles(order, RotationConvention.FRAME_TRANSFORM); 92 * System.out.format(Locale.US, "%f == %f%n", alpha1, anglesF[0]); 93 * System.out.format(Locale.US, "%f == %f%n", alpha2, anglesF[1]); 94 * System.out.format(Locale.US, "%f == %f%n", alpha3, anglesF[2]); 95 * </pre> 96 * @param inertialFrame inertial frame with respect to which orbit should be computed 97 * @param type type of Local Orbital Frame 98 * @param order order of rotations to use for (alpha1, alpha2, alpha3) composition 99 * @param alpha1 angle of the first elementary rotation 100 * @param alpha2 angle of the second elementary rotation 101 * @param alpha3 angle of the third elementary rotation 102 */ 103 public LofOffset(final Frame inertialFrame, final LOFType type, 104 final RotationOrder order, final double alpha1, 105 final double alpha2, final double alpha3) { 106 this.type = type; 107 this.offset = new Rotation(order, RotationConvention.VECTOR_OPERATOR, alpha1, alpha2, alpha3).revert(); 108 if (!inertialFrame.isPseudoInertial()) { 109 throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME, 110 inertialFrame.getName()); 111 } 112 this.inertialFrame = inertialFrame; 113 } 114 115 116 /** {@inheritDoc} */ 117 public Attitude getAttitude(final PVCoordinatesProvider pvProv, 118 final AbsoluteDate date, final Frame frame) { 119 120 // construction of the local orbital frame, using PV from inertial frame 121 final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame); 122 final Transform inertialToLof = type.transformFromInertial(date, pv); 123 124 // take into account the specified start frame (which may not be an inertial one) 125 final Transform frameToInertial = frame.getTransformTo(inertialFrame, date); 126 final Transform frameToLof = new Transform(date, frameToInertial, inertialToLof); 127 128 // compose with offset rotation 129 return new Attitude(date, frame, 130 offset.compose(frameToLof.getRotation(), RotationConvention.VECTOR_OPERATOR), 131 offset.applyTo(frameToLof.getRotationRate()), 132 offset.applyTo(frameToLof.getRotationAcceleration())); 133 134 } 135 136 /** {@inheritDoc} */ 137 public <T extends CalculusFieldElement<T>> FieldAttitude<T> getAttitude(final FieldPVCoordinatesProvider<T> pvProv, 138 final FieldAbsoluteDate<T> date, 139 final Frame frame) { 140 141 // construction of the local orbital frame, using PV from inertial frame 142 final FieldPVCoordinates<T> pv = pvProv.getPVCoordinates(date, inertialFrame); 143 final FieldTransform<T> inertialToLof = type.transformFromInertial(date, pv); 144 145 // take into account the specified start frame (which may not be an inertial one) 146 final FieldTransform<T> frameToInertial = frame.getTransformTo(inertialFrame, date); 147 final FieldTransform<T> frameToLof = new FieldTransform<>(date, frameToInertial, inertialToLof); 148 149 // compose with offset rotation 150 return new FieldAttitude<>(date, frame, 151 frameToLof.getRotation().compose(offset, RotationConvention.FRAME_TRANSFORM), 152 FieldRotation.applyTo(offset, frameToLof.getRotationRate()), 153 FieldRotation.applyTo(offset, frameToLof.getRotationAcceleration())); 154 155 } 156 }