1 /* Copyright 2002-2022 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.orbits;
18
19 import java.io.Serializable;
20
21 import org.hipparchus.geometry.euclidean.threed.Vector3D;
22 import org.hipparchus.linear.DecompositionSolver;
23 import org.hipparchus.linear.MatrixUtils;
24 import org.hipparchus.linear.QRDecomposition;
25 import org.hipparchus.linear.RealMatrix;
26 import org.hipparchus.util.FastMath;
27 import org.hipparchus.util.MathArrays;
28 import org.orekit.errors.OrekitIllegalArgumentException;
29 import org.orekit.errors.OrekitInternalError;
30 import org.orekit.errors.OrekitMessages;
31 import org.orekit.frames.Frame;
32 import org.orekit.frames.Transform;
33 import org.orekit.time.AbsoluteDate;
34 import org.orekit.time.TimeInterpolable;
35 import org.orekit.time.TimeShiftable;
36 import org.orekit.time.TimeStamped;
37 import org.orekit.utils.PVCoordinates;
38 import org.orekit.utils.PVCoordinatesProvider;
39 import org.orekit.utils.TimeStampedPVCoordinates;
40
41 /**
42 * This class handles orbital parameters.
43
44 * <p>
45 * For user convenience, both the Cartesian and the equinoctial elements
46 * are provided by this class, regardless of the canonical representation
47 * implemented in the derived class (which may be classical Keplerian
48 * elements for example).
49 * </p>
50 * <p>
51 * The parameters are defined in a frame specified by the user. It is important
52 * to make sure this frame is consistent: it probably is inertial and centered
53 * on the central body. This information is used for example by some
54 * force models.
55 * </p>
56 * <p>
57 * Instance of this class are guaranteed to be immutable.
58 * </p>
59 * @author Luc Maisonobe
60 * @author Guylaine Prat
61 * @author Fabien Maussion
62 * @author Véronique Pommier-Maurussane
63 */
64 public abstract class Orbit
65 implements TimeStamped, TimeShiftable<Orbit>, TimeInterpolable<Orbit>,
66 Serializable, PVCoordinatesProvider {
67
68 /** Serializable UID. */
69 private static final long serialVersionUID = 438733454597999578L;
70
71 /** Frame in which are defined the orbital parameters. */
72 private final Frame frame;
73
74 /** Date of the orbital parameters. */
75 private final AbsoluteDate date;
76
77 /** Value of mu used to compute position and velocity (m³/s²). */
78 private final double mu;
79
80 /** Computed PVCoordinates. */
81 private transient TimeStampedPVCoordinates pvCoordinates;
82
83 /** Jacobian of the orbital parameters with mean angle with respect to the Cartesian coordinates. */
84 private transient double[][] jacobianMeanWrtCartesian;
85
86 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with mean angle. */
87 private transient double[][] jacobianWrtParametersMean;
88
89 /** Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian coordinates. */
90 private transient double[][] jacobianEccentricWrtCartesian;
91
92 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with eccentric angle. */
93 private transient double[][] jacobianWrtParametersEccentric;
94
95 /** Jacobian of the orbital parameters with true angle with respect to the Cartesian coordinates. */
96 private transient double[][] jacobianTrueWrtCartesian;
97
98 /** Jacobian of the Cartesian coordinates with respect to the orbital parameters with true angle. */
99 private transient double[][] jacobianWrtParametersTrue;
100
101 /** Default constructor.
102 * Build a new instance with arbitrary default elements.
103 * @param frame the frame in which the parameters are defined
104 * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
105 * @param date date of the orbital parameters
106 * @param mu central attraction coefficient (m^3/s^2)
107 * @exception IllegalArgumentException if frame is not a {@link
108 * Frame#isPseudoInertial pseudo-inertial frame}
109 */
110 protected Orbit(final Frame frame, final AbsoluteDate date, final double mu)
111 throws IllegalArgumentException {
112 ensurePseudoInertialFrame(frame);
113 this.date = date;
114 this.mu = mu;
115 this.pvCoordinates = null;
116 this.frame = frame;
117 jacobianMeanWrtCartesian = null;
118 jacobianWrtParametersMean = null;
119 jacobianEccentricWrtCartesian = null;
120 jacobianWrtParametersEccentric = null;
121 jacobianTrueWrtCartesian = null;
122 jacobianWrtParametersTrue = null;
123 }
124
125 /** Set the orbit from Cartesian parameters.
126 *
127 * <p> The acceleration provided in {@code pvCoordinates} is accessible using
128 * {@link #getPVCoordinates()} and {@link #getPVCoordinates(Frame)}. All other methods
129 * use {@code mu} and the position to compute the acceleration, including
130 * {@link #shiftedBy(double)} and {@link #getPVCoordinates(AbsoluteDate, Frame)}.
131 *
132 * @param pvCoordinates the position and velocity in the inertial frame
133 * @param frame the frame in which the {@link TimeStampedPVCoordinates} are defined
134 * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
135 * @param mu central attraction coefficient (m^3/s^2)
136 * @exception IllegalArgumentException if frame is not a {@link
137 * Frame#isPseudoInertial pseudo-inertial frame}
138 */
139 protected Orbit(final TimeStampedPVCoordinates pvCoordinates, final Frame frame, final double mu)
140 throws IllegalArgumentException {
141 ensurePseudoInertialFrame(frame);
142 this.date = pvCoordinates.getDate();
143 this.mu = mu;
144 if (pvCoordinates.getAcceleration().getNormSq() == 0) {
145 // the acceleration was not provided,
146 // compute it from Newtonian attraction
147 final double r2 = pvCoordinates.getPosition().getNormSq();
148 final double r3 = r2 * FastMath.sqrt(r2);
149 this.pvCoordinates = new TimeStampedPVCoordinates(pvCoordinates.getDate(),
150 pvCoordinates.getPosition(),
151 pvCoordinates.getVelocity(),
152 new Vector3D(-mu / r3, pvCoordinates.getPosition()));
153 } else {
154 this.pvCoordinates = pvCoordinates;
155 }
156 this.frame = frame;
157 }
158
159 /** Check if Cartesian coordinates include non-Keplerian acceleration.
160 * @param pva Cartesian coordinates
161 * @param mu central attraction coefficient
162 * @return true if Cartesian coordinates include non-Keplerian acceleration
163 */
164 protected static boolean hasNonKeplerianAcceleration(final PVCoordinates pva, final double mu) {
165
166 final Vector3D p = pva.getPosition();
167 final double r2 = p.getNormSq();
168 final double r = FastMath.sqrt(r2);
169 final Vector3D keplerianAcceleration = new Vector3D(-mu / (r * r2), p);
170
171 // Check if acceleration is null or relatively close to 0 compared to the keplerain acceleration
172 final Vector3D a = pva.getAcceleration();
173 if (a == null || a.getNorm() < 1e-9 * keplerianAcceleration.getNorm()) {
174 return false;
175 }
176
177 final Vector3D nonKeplerianAcceleration = a.subtract(keplerianAcceleration);
178
179 if ( nonKeplerianAcceleration.getNorm() > 1e-9 * keplerianAcceleration.getNorm()) {
180 // we have a relevant acceleration, we can compute derivatives
181 return true;
182 } else {
183 // the provided acceleration is either too small to be reliable (probably even 0), or NaN
184 return false;
185 }
186 }
187
188 /** Get the orbit type.
189 * @return orbit type
190 */
191 public abstract OrbitType getType();
192
193 /** Ensure the defining frame is a pseudo-inertial frame.
194 * @param frame frame to check
195 * @exception IllegalArgumentException if frame is not a {@link
196 * Frame#isPseudoInertial pseudo-inertial frame}
197 */
198 private static void ensurePseudoInertialFrame(final Frame frame)
199 throws IllegalArgumentException {
200 if (!frame.isPseudoInertial()) {
201 throw new OrekitIllegalArgumentException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
202 frame.getName());
203 }
204 }
205
206 /** Get the frame in which the orbital parameters are defined.
207 * @return frame in which the orbital parameters are defined
208 */
209 public Frame getFrame() {
210 return frame;
211 }
212
213 /** Get the semi-major axis.
214 * <p>Note that the semi-major axis is considered negative for hyperbolic orbits.</p>
215 * @return semi-major axis (m)
216 */
217 public abstract double getA();
218
219 /** Get the semi-major axis derivative.
220 * <p>Note that the semi-major axis is considered negative for hyperbolic orbits.</p>
221 * <p>
222 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
223 * </p>
224 * @return semi-major axis derivative (m/s)
225 * @see #hasDerivatives()
226 * @since 9.0
227 */
228 public abstract double getADot();
229
230 /** Get the first component of the equinoctial eccentricity vector derivative.
231 * @return first component of the equinoctial eccentricity vector derivative
232 */
233 public abstract double getEquinoctialEx();
234
235 /** Get the first component of the equinoctial eccentricity vector.
236 * <p>
237 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
238 * </p>
239 * @return first component of the equinoctial eccentricity vector
240 * @see #hasDerivatives()
241 * @since 9.0
242 */
243 public abstract double getEquinoctialExDot();
244
245 /** Get the second component of the equinoctial eccentricity vector derivative.
246 * @return second component of the equinoctial eccentricity vector derivative
247 */
248 public abstract double getEquinoctialEy();
249
250 /** Get the second component of the equinoctial eccentricity vector.
251 * <p>
252 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
253 * </p>
254 * @return second component of the equinoctial eccentricity vector
255 * @see #hasDerivatives()
256 * @since 9.0
257 */
258 public abstract double getEquinoctialEyDot();
259
260 /** Get the first component of the inclination vector.
261 * @return first component of the inclination vector
262 */
263 public abstract double getHx();
264
265 /** Get the first component of the inclination vector derivative.
266 * <p>
267 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
268 * </p>
269 * @return first component of the inclination vector derivative
270 * @see #hasDerivatives()
271 * @since 9.0
272 */
273 public abstract double getHxDot();
274
275 /** Get the second component of the inclination vector.
276 * @return second component of the inclination vector
277 */
278 public abstract double getHy();
279
280 /** Get the second component of the inclination vector derivative.
281 * <p>
282 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
283 * </p>
284 * @return second component of the inclination vector derivative
285 * @see #hasDerivatives()
286 * @since 9.0
287 */
288 public abstract double getHyDot();
289
290 /** Get the eccentric longitude argument.
291 * @return E + ω + Ω eccentric longitude argument (rad)
292 */
293 public abstract double getLE();
294
295 /** Get the eccentric longitude argument derivative.
296 * <p>
297 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
298 * </p>
299 * @return d(E + ω + Ω)/dt eccentric longitude argument derivative (rad/s)
300 * @see #hasDerivatives()
301 * @since 9.0
302 */
303 public abstract double getLEDot();
304
305 /** Get the true longitude argument.
306 * @return v + ω + Ω true longitude argument (rad)
307 */
308 public abstract double getLv();
309
310 /** Get the true longitude argument derivative.
311 * <p>
312 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
313 * </p>
314 * @return d(v + ω + Ω)/dt true longitude argument derivative (rad/s)
315 * @see #hasDerivatives()
316 * @since 9.0
317 */
318 public abstract double getLvDot();
319
320 /** Get the mean longitude argument.
321 * @return M + ω + Ω mean longitude argument (rad)
322 */
323 public abstract double getLM();
324
325 /** Get the mean longitude argument derivative.
326 * <p>
327 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
328 * </p>
329 * @return d(M + ω + Ω)/dt mean longitude argument derivative (rad/s)
330 * @see #hasDerivatives()
331 * @since 9.0
332 */
333 public abstract double getLMDot();
334
335 // Additional orbital elements
336
337 /** Get the eccentricity.
338 * @return eccentricity
339 */
340 public abstract double getE();
341
342 /** Get the eccentricity derivative.
343 * <p>
344 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
345 * </p>
346 * @return eccentricity derivative
347 * @see #hasDerivatives()
348 * @since 9.0
349 */
350 public abstract double getEDot();
351
352 /** Get the inclination.
353 * @return inclination (rad)
354 */
355 public abstract double getI();
356
357 /** Get the inclination derivative.
358 * <p>
359 * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
360 * </p>
361 * @return inclination derivative (rad/s)
362 * @see #hasDerivatives()
363 * @since 9.0
364 */
365 public abstract double getIDot();
366
367 /** Check if orbit includes derivatives.
368 * @return true if orbit includes derivatives
369 * @see #getADot()
370 * @see #getEquinoctialExDot()
371 * @see #getEquinoctialEyDot()
372 * @see #getHxDot()
373 * @see #getHyDot()
374 * @see #getLEDot()
375 * @see #getLvDot()
376 * @see #getLMDot()
377 * @see #getEDot()
378 * @see #getIDot()
379 * @since 9.0
380 */
381 public boolean hasDerivatives() {
382 return !Double.isNaN(getADot());
383 }
384
385 /** Get the central acceleration constant.
386 * @return central acceleration constant
387 */
388 public double getMu() {
389 return mu;
390 }
391
392 /** Get the Keplerian period.
393 * <p>The Keplerian period is computed directly from semi major axis
394 * and central acceleration constant.</p>
395 * @return Keplerian period in seconds, or positive infinity for hyperbolic orbits
396 */
397 public double getKeplerianPeriod() {
398 final double a = getA();
399 return (a < 0) ? Double.POSITIVE_INFINITY : 2.0 * FastMath.PI * a * FastMath.sqrt(a / mu);
400 }
401
402 /** Get the Keplerian mean motion.
403 * <p>The Keplerian mean motion is computed directly from semi major axis
404 * and central acceleration constant.</p>
405 * @return Keplerian mean motion in radians per second
406 */
407 public double getKeplerianMeanMotion() {
408 final double absA = FastMath.abs(getA());
409 return FastMath.sqrt(mu / absA) / absA;
410 }
411
412 /** Get the date of orbital parameters.
413 * @return date of the orbital parameters
414 */
415 public AbsoluteDate getDate() {
416 return date;
417 }
418
419 /** Get the {@link TimeStampedPVCoordinates} in a specified frame.
420 * @param outputFrame frame in which the position/velocity coordinates shall be computed
421 * @return pvCoordinates in the specified output frame
422 * @see #getPVCoordinates()
423 */
424 public TimeStampedPVCoordinates getPVCoordinates(final Frame outputFrame) {
425 if (pvCoordinates == null) {
426 pvCoordinates = initPVCoordinates();
427 }
428
429 // If output frame requested is the same as definition frame,
430 // PV coordinates are returned directly
431 if (outputFrame == frame) {
432 return pvCoordinates;
433 }
434
435 // Else, PV coordinates are transformed to output frame
436 final Transform t = frame.getTransformTo(outputFrame, date);
437 return t.transformPVCoordinates(pvCoordinates);
438 }
439
440 /** {@inheritDoc} */
441 public TimeStampedPVCoordinates getPVCoordinates(final AbsoluteDate otherDate, final Frame otherFrame) {
442 return shiftedBy(otherDate.durationFrom(getDate())).getPVCoordinates(otherFrame);
443 }
444
445
446 /** Get the {@link TimeStampedPVCoordinates} in definition frame.
447 * @return pvCoordinates in the definition frame
448 * @see #getPVCoordinates(Frame)
449 */
450 public TimeStampedPVCoordinates getPVCoordinates() {
451 if (pvCoordinates == null) {
452 pvCoordinates = initPVCoordinates();
453 }
454 return pvCoordinates;
455 }
456
457 /** Compute the position/velocity coordinates from the canonical parameters.
458 * @return computed position/velocity coordinates
459 */
460 protected abstract TimeStampedPVCoordinates initPVCoordinates();
461
462 /** Get a time-shifted orbit.
463 * <p>
464 * The orbit can be slightly shifted to close dates. The shifting model is a
465 * Keplerian one if no derivatives are available in the orbit, or Keplerian
466 * plus quadratic effect of the non-Keplerian acceleration if derivatives are
467 * available. Shifting is <em>not</em> intended as a replacement for proper
468 * orbit propagation but should be sufficient for small time shifts or coarse
469 * accuracy.
470 * </p>
471 * @param dt time shift in seconds
472 * @return a new orbit, shifted with respect to the instance (which is immutable)
473 */
474 public abstract Orbit shiftedBy(double dt);
475
476 /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
477 * <p>
478 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
479 * respect to Cartesian coordinate j. This means each row corresponds to one orbital parameter
480 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
481 * </p>
482 * @param type type of the position angle to use
483 * @param jacobian placeholder 6x6 (or larger) matrix to be filled with the Jacobian, if matrix
484 * is larger than 6x6, only the 6x6 upper left corner will be modified
485 */
486 public void getJacobianWrtCartesian(final PositionAngle type, final double[][] jacobian) {
487
488 final double[][] cachedJacobian;
489 synchronized (this) {
490 switch (type) {
491 case MEAN :
492 if (jacobianMeanWrtCartesian == null) {
493 // first call, we need to compute the Jacobian and cache it
494 jacobianMeanWrtCartesian = computeJacobianMeanWrtCartesian();
495 }
496 cachedJacobian = jacobianMeanWrtCartesian;
497 break;
498 case ECCENTRIC :
499 if (jacobianEccentricWrtCartesian == null) {
500 // first call, we need to compute the Jacobian and cache it
501 jacobianEccentricWrtCartesian = computeJacobianEccentricWrtCartesian();
502 }
503 cachedJacobian = jacobianEccentricWrtCartesian;
504 break;
505 case TRUE :
506 if (jacobianTrueWrtCartesian == null) {
507 // first call, we need to compute the Jacobian and cache it
508 jacobianTrueWrtCartesian = computeJacobianTrueWrtCartesian();
509 }
510 cachedJacobian = jacobianTrueWrtCartesian;
511 break;
512 default :
513 throw new OrekitInternalError(null);
514 }
515 }
516
517 // fill the user provided array
518 for (int i = 0; i < cachedJacobian.length; ++i) {
519 System.arraycopy(cachedJacobian[i], 0, jacobian[i], 0, cachedJacobian[i].length);
520 }
521
522 }
523
524 /** Compute the Jacobian of the Cartesian parameters with respect to the orbital parameters.
525 * <p>
526 * Element {@code jacobian[i][j]} is the derivative of Cartesian coordinate i of the orbit with
527 * respect to orbital parameter j. This means each row corresponds to one Cartesian coordinate
528 * x, y, z, xdot, ydot, zdot whereas columns 0 to 5 correspond to the orbital parameters.
529 * </p>
530 * @param type type of the position angle to use
531 * @param jacobian placeholder 6x6 (or larger) matrix to be filled with the Jacobian, if matrix
532 * is larger than 6x6, only the 6x6 upper left corner will be modified
533 */
534 public void getJacobianWrtParameters(final PositionAngle type, final double[][] jacobian) {
535
536 final double[][] cachedJacobian;
537 synchronized (this) {
538 switch (type) {
539 case MEAN :
540 if (jacobianWrtParametersMean == null) {
541 // first call, we need to compute the Jacobian and cache it
542 jacobianWrtParametersMean = createInverseJacobian(type);
543 }
544 cachedJacobian = jacobianWrtParametersMean;
545 break;
546 case ECCENTRIC :
547 if (jacobianWrtParametersEccentric == null) {
548 // first call, we need to compute the Jacobian and cache it
549 jacobianWrtParametersEccentric = createInverseJacobian(type);
550 }
551 cachedJacobian = jacobianWrtParametersEccentric;
552 break;
553 case TRUE :
554 if (jacobianWrtParametersTrue == null) {
555 // first call, we need to compute the Jacobian and cache it
556 jacobianWrtParametersTrue = createInverseJacobian(type);
557 }
558 cachedJacobian = jacobianWrtParametersTrue;
559 break;
560 default :
561 throw new OrekitInternalError(null);
562 }
563 }
564
565 // fill the user-provided array
566 for (int i = 0; i < cachedJacobian.length; ++i) {
567 System.arraycopy(cachedJacobian[i], 0, jacobian[i], 0, cachedJacobian[i].length);
568 }
569
570 }
571
572 /** Create an inverse Jacobian.
573 * @param type type of the position angle to use
574 * @return inverse Jacobian
575 */
576 private double[][] createInverseJacobian(final PositionAngle type) {
577
578 // get the direct Jacobian
579 final double[][] directJacobian = new double[6][6];
580 getJacobianWrtCartesian(type, directJacobian);
581
582 // invert the direct Jacobian
583 final RealMatrix matrix = MatrixUtils.createRealMatrix(directJacobian);
584 final DecompositionSolver solver = new QRDecomposition(matrix).getSolver();
585 return solver.getInverse().getData();
586
587 }
588
589 /** Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
590 * <p>
591 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
592 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
593 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
594 * </p>
595 * @return 6x6 Jacobian matrix
596 * @see #computeJacobianEccentricWrtCartesian()
597 * @see #computeJacobianTrueWrtCartesian()
598 */
599 protected abstract double[][] computeJacobianMeanWrtCartesian();
600
601 /** Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
602 * <p>
603 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
604 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
605 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
606 * </p>
607 * @return 6x6 Jacobian matrix
608 * @see #computeJacobianMeanWrtCartesian()
609 * @see #computeJacobianTrueWrtCartesian()
610 */
611 protected abstract double[][] computeJacobianEccentricWrtCartesian();
612
613 /** Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
614 * <p>
615 * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
616 * respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
617 * whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
618 * </p>
619 * @return 6x6 Jacobian matrix
620 * @see #computeJacobianMeanWrtCartesian()
621 * @see #computeJacobianEccentricWrtCartesian()
622 */
623 protected abstract double[][] computeJacobianTrueWrtCartesian();
624
625 /** Add the contribution of the Keplerian motion to parameters derivatives
626 * <p>
627 * This method is used by integration-based propagators to evaluate the part of Keplerian
628 * motion to evolution of the orbital state.
629 * </p>
630 * @param type type of the position angle in the state
631 * @param gm attraction coefficient to use
632 * @param pDot array containing orbital state derivatives to update (the Keplerian
633 * part must be <em>added</em> to the array components, as the array may already
634 * contain some non-zero elements corresponding to non-Keplerian parts)
635 */
636 public abstract void addKeplerContribution(PositionAngle type, double gm, double[] pDot);
637
638 /** Fill a Jacobian half row with a single vector.
639 * @param a coefficient of the vector
640 * @param v vector
641 * @param row Jacobian matrix row
642 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
643 */
644 protected static void fillHalfRow(final double a, final Vector3D v, final double[] row, final int j) {
645 row[j] = a * v.getX();
646 row[j + 1] = a * v.getY();
647 row[j + 2] = a * v.getZ();
648 }
649
650 /** Fill a Jacobian half row with a linear combination of vectors.
651 * @param a1 coefficient of the first vector
652 * @param v1 first vector
653 * @param a2 coefficient of the second vector
654 * @param v2 second vector
655 * @param row Jacobian matrix row
656 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
657 */
658 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
659 final double[] row, final int j) {
660 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX());
661 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY());
662 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ());
663 }
664
665 /** Fill a Jacobian half row with a linear combination of vectors.
666 * @param a1 coefficient of the first vector
667 * @param v1 first vector
668 * @param a2 coefficient of the second vector
669 * @param v2 second vector
670 * @param a3 coefficient of the third vector
671 * @param v3 third vector
672 * @param row Jacobian matrix row
673 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
674 */
675 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
676 final double a3, final Vector3D v3,
677 final double[] row, final int j) {
678 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX(), a3, v3.getX());
679 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY(), a3, v3.getY());
680 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ(), a3, v3.getZ());
681 }
682
683 /** Fill a Jacobian half row with a linear combination of vectors.
684 * @param a1 coefficient of the first vector
685 * @param v1 first vector
686 * @param a2 coefficient of the second vector
687 * @param v2 second vector
688 * @param a3 coefficient of the third vector
689 * @param v3 third vector
690 * @param a4 coefficient of the fourth vector
691 * @param v4 fourth vector
692 * @param row Jacobian matrix row
693 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
694 */
695 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
696 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
697 final double[] row, final int j) {
698 row[j] = MathArrays.linearCombination(a1, v1.getX(), a2, v2.getX(), a3, v3.getX(), a4, v4.getX());
699 row[j + 1] = MathArrays.linearCombination(a1, v1.getY(), a2, v2.getY(), a3, v3.getY(), a4, v4.getY());
700 row[j + 2] = MathArrays.linearCombination(a1, v1.getZ(), a2, v2.getZ(), a3, v3.getZ(), a4, v4.getZ());
701 }
702
703 /** Fill a Jacobian half row with a linear combination of vectors.
704 * @param a1 coefficient of the first vector
705 * @param v1 first vector
706 * @param a2 coefficient of the second vector
707 * @param v2 second vector
708 * @param a3 coefficient of the third vector
709 * @param v3 third vector
710 * @param a4 coefficient of the fourth vector
711 * @param v4 fourth vector
712 * @param a5 coefficient of the fifth vector
713 * @param v5 fifth vector
714 * @param row Jacobian matrix row
715 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
716 */
717 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
718 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
719 final double a5, final Vector3D v5,
720 final double[] row, final int j) {
721 final double[] a = new double[] {
722 a1, a2, a3, a4, a5
723 };
724 row[j] = MathArrays.linearCombination(a, new double[] {
725 v1.getX(), v2.getX(), v3.getX(), v4.getX(), v5.getX()
726 });
727 row[j + 1] = MathArrays.linearCombination(a, new double[] {
728 v1.getY(), v2.getY(), v3.getY(), v4.getY(), v5.getY()
729 });
730 row[j + 2] = MathArrays.linearCombination(a, new double[] {
731 v1.getZ(), v2.getZ(), v3.getZ(), v4.getZ(), v5.getZ()
732 });
733 }
734
735 /** Fill a Jacobian half row with a linear combination of vectors.
736 * @param a1 coefficient of the first vector
737 * @param v1 first vector
738 * @param a2 coefficient of the second vector
739 * @param v2 second vector
740 * @param a3 coefficient of the third vector
741 * @param v3 third vector
742 * @param a4 coefficient of the fourth vector
743 * @param v4 fourth vector
744 * @param a5 coefficient of the fifth vector
745 * @param v5 fifth vector
746 * @param a6 coefficient of the sixth vector
747 * @param v6 sixth vector
748 * @param row Jacobian matrix row
749 * @param j index of the first element to set (row[j], row[j+1] and row[j+2] will all be set)
750 */
751 protected static void fillHalfRow(final double a1, final Vector3D v1, final double a2, final Vector3D v2,
752 final double a3, final Vector3D v3, final double a4, final Vector3D v4,
753 final double a5, final Vector3D v5, final double a6, final Vector3D v6,
754 final double[] row, final int j) {
755 final double[] a = new double[] {
756 a1, a2, a3, a4, a5, a6
757 };
758 row[j] = MathArrays.linearCombination(a, new double[] {
759 v1.getX(), v2.getX(), v3.getX(), v4.getX(), v5.getX(), v6.getX()
760 });
761 row[j + 1] = MathArrays.linearCombination(a, new double[] {
762 v1.getY(), v2.getY(), v3.getY(), v4.getY(), v5.getY(), v6.getY()
763 });
764 row[j + 2] = MathArrays.linearCombination(a, new double[] {
765 v1.getZ(), v2.getZ(), v3.getZ(), v4.getZ(), v5.getZ(), v6.getZ()
766 });
767 }
768
769 }