T - type of the field elementspublic class FieldKeplerianOrbit<T extends org.hipparchus.CalculusFieldElement<T>> extends FieldOrbit<T> implements PositionAngleBased
The parameters used internally are the classical Keplerian elements:
a
e
i
ω
Ω
v
where ω stands for the Perigee Argument, Ω stands for the
Right Ascension of the Ascending Node and v stands for the true anomaly.
This class supports hyperbolic orbits, using the convention that semi major axis is negative for such orbits (and of course eccentricity is greater than 1).
When orbit is either equatorial or circular, some Keplerian elements
(more precisely ω and Ω) become ambiguous so this class should not
be used for such orbits. For this reason, equinoctial
orbits is the recommended way to represent orbits.
The instance KeplerianOrbit is guaranteed to be immutable.
Orbit,
CircularOrbit,
CartesianOrbit,
EquinoctialOrbit| Constructor and Description |
|---|
FieldKeplerianOrbit(org.hipparchus.Field<T> field,
KeplerianOrbit op)
Constructor from Field and KeplerianOrbit.
|
FieldKeplerianOrbit(org.hipparchus.Field<T> field,
Orbit op)
Constructor from Field and Orbit.
|
FieldKeplerianOrbit(FieldOrbit<T> op)
Constructor from any kind of orbital parameters.
|
FieldKeplerianOrbit(FieldPVCoordinates<T> FieldPVCoordinates,
Frame frame,
FieldAbsoluteDate<T> date,
T mu)
Constructor from Cartesian parameters.
|
FieldKeplerianOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates,
Frame frame,
T mu)
Constructor from Cartesian parameters.
|
FieldKeplerianOrbit(T a,
T e,
T i,
T pa,
T raan,
T anomaly,
PositionAngleType type,
Frame frame,
FieldAbsoluteDate<T> date,
T mu)
Creates a new instance.
|
FieldKeplerianOrbit(T a,
T e,
T i,
T pa,
T raan,
T anomaly,
T aDot,
T eDot,
T iDot,
T paDot,
T raanDot,
T anomalyDot,
PositionAngleType type,
Frame frame,
FieldAbsoluteDate<T> date,
T mu)
Creates a new instance.
|
| Modifier and Type | Method and Description |
|---|---|
void |
addKeplerContribution(PositionAngleType type,
T gm,
T[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives
|
protected T[][] |
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected T[][] |
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
T |
getA()
Get the semi-major axis.
|
T |
getADot()
Get the semi-major axis derivative.
|
T |
getAnomaly(PositionAngleType type)
Get the anomaly.
|
T |
getAnomalyDot(PositionAngleType type)
Get the anomaly derivative.
|
PositionAngleType |
getCachedPositionAngleType()
Get the cached
PositionAngleType. |
T |
getE()
Get the eccentricity.
|
T |
getEccentricAnomaly()
Get the eccentric anomaly.
|
T |
getEccentricAnomalyDot()
Get the eccentric anomaly derivative.
|
T |
getEDot()
Get the eccentricity derivative.
|
T |
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.
|
T |
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.
|
T |
getHx()
Get the first component of the inclination vector.
|
T |
getHxDot()
Get the first component of the inclination vector derivative.
|
T |
getHy()
Get the second component of the inclination vector.
|
T |
getHyDot()
Get the second component of the inclination vector derivative.
|
T |
getI()
Get the inclination.
|
T |
getIDot()
Get the inclination derivative.
|
T |
getLE()
Get the eccentric longitude argument.
|
T |
getLEDot()
Get the eccentric longitude argument derivative.
|
T |
getLM()
Get the mean longitude argument.
|
T |
getLMDot()
Get the mean longitude argument derivative.
|
T |
getLv()
Get the true longitude argument.
|
T |
getLvDot()
Get the true longitude argument derivative.
|
T |
getMeanAnomaly()
Get the mean anomaly.
|
T |
getMeanAnomalyDot()
Get the mean anomaly derivative.
|
T |
getPerigeeArgument()
Get the perigee argument.
|
T |
getPerigeeArgumentDot()
Get the perigee argument derivative.
|
T |
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.
|
T |
getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.
|
T |
getTrueAnomaly()
Get the true anomaly.
|
T |
getTrueAnomalyDot()
Get the true anomaly derivative.
|
OrbitType |
getType()
Get the orbit type.
|
boolean |
hasDerivatives()
Check if orbit includes derivatives.
|
boolean |
hasRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables.
|
protected org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> |
initPosition()
Compute the position coordinates from the canonical parameters.
|
protected TimeStampedFieldPVCoordinates<T> |
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.
|
FieldKeplerianOrbit<T> |
removeRates()
Create a new instance such that
PositionAngleBased.hasRates() is false. |
FieldKeplerianOrbit<T> |
shiftedBy(double dt)
Get a time-shifted instance.
|
FieldKeplerianOrbit<T> |
shiftedBy(T dt)
Get a time-shifted orbit.
|
KeplerianOrbit |
toOrbit()
Transforms the FieldOrbit instance into an Orbit instance.
|
String |
toString()
Returns a string representation of this Keplerian parameters object.
|
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getField, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMeanAnomalyDotWrtA, getMu, getOne, getPosition, getPosition, getPVCoordinates, getPVCoordinates, getPVCoordinates, getZero, hasNonKeplerianAcceleration, isEllipticalclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetPositiondurationFrompublic FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
a - semi-major axis (m), negative for hyperbolic orbitse - eccentricity (positive or equal to 0)i - inclination (rad)pa - perigee argument (ω, rad)raan - right ascension of ascending node (Ω, rad)anomaly - mean, eccentric or true anomaly (rad)type - type of anomalyframe - the frame in which the parameters are defined
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial frame or a and e don't match for hyperbolic orbits,
or v is out of range for hyperbolic orbitspublic FieldKeplerianOrbit(T a, T e, T i, T pa, T raan, T anomaly, T aDot, T eDot, T iDot, T paDot, T raanDot, T anomalyDot, PositionAngleType type, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
a - semi-major axis (m), negative for hyperbolic orbitse - eccentricity (positive or equal to 0)i - inclination (rad)pa - perigee argument (ω, rad)raan - right ascension of ascending node (Ω, rad)anomaly - mean, eccentric or true anomaly (rad)aDot - semi-major axis derivative, null if unknown (m/s)eDot - eccentricity derivative, null if unknowniDot - inclination derivative, null if unknown (rad/s)paDot - perigee argument derivative, null if unknown (rad/s)raanDot - right ascension of ascending node derivative, null if unknown (rad/s)anomalyDot - mean, eccentric or true anomaly derivative, null if unknown (rad/s)type - type of anomalyframe - the frame in which the parameters are defined
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial frame or a and e don't match for hyperbolic orbits,
or v is out of range for hyperbolic orbitspublic FieldKeplerianOrbit(TimeStampedFieldPVCoordinates<T> pvCoordinates, Frame frame, T mu) throws IllegalArgumentException
The acceleration provided in FieldPVCoordinates is accessible using
FieldOrbit.getPVCoordinates() and FieldOrbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(CalculusFieldElement) and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame).
pvCoordinates - the PVCoordinates of the satelliteframe - the frame in which are defined the FieldPVCoordinates
(must be a pseudo-inertial frame)mu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic FieldKeplerianOrbit(FieldPVCoordinates<T> FieldPVCoordinates, Frame frame, FieldAbsoluteDate<T> date, T mu) throws IllegalArgumentException
The acceleration provided in FieldPVCoordinates is accessible using
FieldOrbit.getPVCoordinates() and FieldOrbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(CalculusFieldElement) and FieldOrbit.getPVCoordinates(FieldAbsoluteDate, Frame).
FieldPVCoordinates - the PVCoordinates of the satelliteframe - the frame in which are defined the FieldPVCoordinates
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic FieldKeplerianOrbit(FieldOrbit<T> op)
op - orbital parameters to copypublic FieldKeplerianOrbit(org.hipparchus.Field<T> field, KeplerianOrbit op)
Build a FieldKeplerianOrbit from non-Field KeplerianOrbit.
field - CalculusField to base object onop - non-field orbit with only "constant" termspublic OrbitType getType()
getType in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
getA in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getADot()
Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is null.
getADot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getE()
getE in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getEDot()
If the orbit was created without derivatives, the value returned is null.
getEDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getI()
If the orbit was created without derivatives, the value returned is null.
getI in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getIDot()
getIDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getPerigeeArgument()
public T getPerigeeArgumentDot()
If the orbit was created without derivatives, the value returned is null.
public T getRightAscensionOfAscendingNode()
public T getRightAscensionOfAscendingNodeDot()
If the orbit was created without derivatives, the value returned is null.
public T getTrueAnomaly()
public T getTrueAnomalyDot()
If the orbit was created without derivatives, the value returned is null.
public T getEccentricAnomaly()
public T getEccentricAnomalyDot()
If the orbit was created without derivatives, the value returned is null.
public T getMeanAnomaly()
public T getMeanAnomalyDot()
If the orbit was created without derivatives, the value returned is null.
public T getAnomaly(PositionAngleType type)
type - type of the anglepublic T getAnomalyDot(PositionAngleType type)
If the orbit was created without derivatives, the value returned is null.
type - type of the anglepublic boolean hasDerivatives()
hasDerivatives in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>FieldOrbit.getADot(),
FieldOrbit.getEquinoctialExDot(),
FieldOrbit.getEquinoctialEyDot(),
FieldOrbit.getHxDot(),
FieldOrbit.getHyDot(),
FieldOrbit.getLEDot(),
FieldOrbit.getLvDot(),
FieldOrbit.getLMDot(),
FieldOrbit.getEDot(),
FieldOrbit.getIDot()public T getEquinoctialEx()
getEquinoctialEx in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getEquinoctialExDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialExDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getEquinoctialEy()
getEquinoctialEy in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getEquinoctialEyDot()
If the orbit was created without derivatives, the value returned is null.
getEquinoctialEyDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getHx()
getHx in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getHxDot()
If the orbit was created without derivatives, the value returned is null.
getHxDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getHy()
getHy in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getHyDot()
getHyDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getLv()
getLv in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getLvDot()
If the orbit was created without derivatives, the value returned is null.
getLvDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getLE()
getLE in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getLEDot()
If the orbit was created without derivatives, the value returned is null.
getLEDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getLM()
getLM in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public T getLMDot()
If the orbit was created without derivatives, the value returned is null.
getLMDot in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>protected org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> initPosition()
initPosition in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>protected TimeStampedFieldPVCoordinates<T> initPVCoordinates()
initPVCoordinates in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>public FieldKeplerianOrbit<T> shiftedBy(double dt)
shiftedBy in interface TimeShiftable<FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>>dt - time shift in secondspublic FieldKeplerianOrbit<T> shiftedBy(T dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple Keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
shiftedBy in interface FieldTimeShiftable<FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>,T extends org.hipparchus.CalculusFieldElement<T>>shiftedBy in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>dt - time shift in secondsprotected T[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>FieldOrbit.computeJacobianEccentricWrtCartesian(),
FieldOrbit.computeJacobianTrueWrtCartesian()protected T[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>FieldOrbit.computeJacobianMeanWrtCartesian(),
FieldOrbit.computeJacobianTrueWrtCartesian()protected T[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>FieldOrbit.computeJacobianMeanWrtCartesian(),
FieldOrbit.computeJacobianEccentricWrtCartesian()public void addKeplerContribution(PositionAngleType type, T gm, T[] pDot)
This method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
addKeplerContribution in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>type - type of the position angle in the stategm - attraction coefficient to usepDot - array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)public String toString()
public PositionAngleType getCachedPositionAngleType()
PositionAngleType.getCachedPositionAngleType in interface PositionAngleBasedpublic boolean hasRates()
hasRates in interface PositionAngleBasedpublic FieldKeplerianOrbit<T> removeRates()
PositionAngleBased.hasRates() is false.removeRates in interface PositionAngleBasedpublic KeplerianOrbit toOrbit()
toOrbit in class FieldOrbit<T extends org.hipparchus.CalculusFieldElement<T>>Copyright © 2002-2023 CS GROUP. All rights reserved.