1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.estimation.sequential;
18
19 import java.util.List;
20
21 import org.hipparchus.exception.MathRuntimeException;
22 import org.hipparchus.filtering.kalman.KalmanFilter;
23 import org.hipparchus.filtering.kalman.ProcessEstimate;
24 import org.hipparchus.filtering.kalman.extended.ExtendedKalmanFilter;
25 import org.hipparchus.linear.MatrixDecomposer;
26 import org.orekit.errors.OrekitException;
27 import org.orekit.estimation.measurements.ObservedMeasurement;
28 import org.orekit.propagation.Propagator;
29 import org.orekit.propagation.analytical.BrouwerLyddanePropagator;
30 import org.orekit.propagation.analytical.EcksteinHechlerPropagator;
31 import org.orekit.propagation.analytical.Ephemeris;
32 import org.orekit.propagation.analytical.KeplerianPropagator;
33 import org.orekit.propagation.analytical.tle.TLEPropagator;
34 import org.orekit.propagation.conversion.PropagatorBuilder;
35 import org.orekit.propagation.numerical.NumericalPropagator;
36 import org.orekit.propagation.semianalytical.dsst.DSSTPropagator;
37 import org.orekit.utils.ParameterDriver;
38 import org.orekit.utils.ParameterDriversList;
39
40
41 /**
42 * Implementation of a Kalman filter to perform orbit determination.
43 * <p>
44 * The filter uses a {@link PropagatorBuilder} to initialize its reference trajectory.
45 * The Kalman estimator can be used with a {@link NumericalPropagator}, {@link TLEPropagator},
46 * {@link BrouwerLyddanePropagator}, {@link EcksteinHechlerPropagator}, {@link KeplerianPropagator},
47 * or {@link Ephemeris}.
48 * </p>
49 * <p>
50 * Kalman estimation using a {@link DSSTPropagator semi-analytical orbit propagator} must be done using
51 * the {@link SemiAnalyticalKalmanEstimator}.
52 * </p>
53 * <p>
54 * The estimated parameters are driven by {@link ParameterDriver} objects. They are of 3 different types:<ol>
55 * <li><b>Orbital parameters</b>:The position and velocity of the spacecraft, or, more generally, its orbit.<br>
56 * These parameters are retrieved from the reference trajectory propagator builder when the filter is initialized.</li>
57 * <li><b>Propagation parameters</b>: Some parameters modelling physical processes (SRP or drag coefficients etc...).<br>
58 * They are also retrieved from the propagator builder during the initialization phase.</li>
59 * <li><b>Measurements parameters</b>: Parameters related to measurements (station biases, positions etc...).<br>
60 * They are passed down to the filter in its constructor.</li>
61 * </ol>
62 * <p>
63 * The total number of estimated parameters is m, the size of the state vector.
64 * </p>
65 * <p>
66 * The Kalman filter implementation used is provided by the underlying mathematical library Hipparchus.
67 * All the variables seen by Hipparchus (states, covariances, measurement matrices...) are normalized
68 * using a specific scale for each estimated parameters or standard deviation noise for each measurement components.
69 * </p>
70 *
71 * <p>A {@link KalmanEstimator} object is built using the {@link KalmanEstimatorBuilder#build() build}
72 * method of a {@link KalmanEstimatorBuilder}.</p>
73 *
74 * @author Romain Gerbaud
75 * @author Maxime Journot
76 * @author Luc Maisonobe
77 * @since 9.2
78 */
79 public class KalmanEstimator extends AbstractKalmanEstimator {
80
81 /** Kalman filter process model. */
82 private final KalmanModel processModel;
83
84 /** Filter. */
85 private final KalmanFilter<MeasurementDecorator> filter;
86
87 /** Kalman filter estimator constructor (package private).
88 * @param decomposer decomposer to use for the correction phase
89 * @param propagatorBuilders propagators builders used to evaluate the orbit.
90 * @param processNoiseMatricesProviders providers for process noise matrices
91 * @param estimatedMeasurementParameters measurement parameters to estimate
92 * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
93 * @since 10.3
94 */
95 KalmanEstimator(final MatrixDecomposer decomposer,
96 final List<PropagatorBuilder> propagatorBuilders,
97 final List<CovarianceMatrixProvider> processNoiseMatricesProviders,
98 final ParameterDriversList estimatedMeasurementParameters,
99 final CovarianceMatrixProvider measurementProcessNoiseMatrix) {
100 super(decomposer, propagatorBuilders);
101
102 // Build the process model and measurement model
103 this.processModel = new KalmanModel(propagatorBuilders,
104 processNoiseMatricesProviders,
105 estimatedMeasurementParameters,
106 measurementProcessNoiseMatrix);
107
108 this.filter = new ExtendedKalmanFilter<>(decomposer, processModel, processModel.getEstimate());
109
110 }
111
112 /** {@inheritDoc}. */
113 @Override
114 protected KalmanEstimation getKalmanEstimation() {
115 return processModel;
116 }
117
118 /** {@inheritDoc}. */
119 @Override
120 protected KalmanFilter<MeasurementDecorator> getKalmanFilter() {
121 return filter;
122 }
123
124 /** {@inheritDoc}. */
125 @Override
126 protected double[] getScale() {
127 return processModel.getScale();
128 }
129
130 /** Process a single measurement.
131 * <p>
132 * Update the filter with the new measurement by calling the estimate method.
133 * </p>
134 * @param observedMeasurement the measurement to process
135 * @return estimated propagators
136 */
137 public Propagator[] estimationStep(final ObservedMeasurement<?> observedMeasurement) {
138 try {
139 final ProcessEstimate estimate = filter.estimationStep(KalmanEstimatorUtil.decorate(observedMeasurement, getReferenceDate()));
140 processModel.finalizeEstimation(observedMeasurement, estimate);
141 if (getObserver() != null) {
142 getObserver().evaluationPerformed(processModel);
143 }
144 return processModel.getEstimatedPropagators();
145 } catch (MathRuntimeException mrte) {
146 throw new OrekitException(mrte);
147 }
148 }
149
150 /** Process several measurements.
151 * @param observedMeasurements the measurements to process in <em>chronologically sorted</em> order
152 * @return estimated propagators
153 */
154 public Propagator[] processMeasurements(final Iterable<ObservedMeasurement<?>> observedMeasurements) {
155 Propagator[] propagators = null;
156 for (ObservedMeasurement<?> observedMeasurement : observedMeasurements) {
157 propagators = estimationStep(observedMeasurement);
158 }
159 return propagators;
160 }
161
162 }