1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.estimation.sequential;
18  
19  import java.util.Arrays;
20  import java.util.Collections;
21  import java.util.List;
22  
23  import org.hipparchus.filtering.kalman.KalmanFilter;
24  import org.hipparchus.filtering.kalman.unscented.UnscentedKalmanFilter;
25  import org.hipparchus.linear.MatrixDecomposer;
26  import org.hipparchus.util.UnscentedTransformProvider;
27  import org.orekit.estimation.measurements.ObservedMeasurement;
28  import org.orekit.propagation.conversion.DSSTPropagatorBuilder;
29  import org.orekit.propagation.semianalytical.dsst.DSSTPropagator;
30  import org.orekit.utils.ParameterDriver;
31  import org.orekit.utils.ParameterDriversList;
32  
33  /**
34   * Implementation of an Unscented Semi-analytical Kalman filter (USKF) to perform orbit determination.
35   * <p>
36   * The filter uses a {@link DSSTPropagatorBuilder}.
37   * </p>
38   * <p>
39   * The estimated parameters are driven by {@link ParameterDriver} objects. They are of 3 different types:<ol>
40   *   <li><b>Orbital parameters</b>:The position and velocity of the spacecraft, or, more generally, its orbit.<br>
41   *       These parameters are retrieved from the reference trajectory propagator builder when the filter is initialized.</li>
42   *   <li><b>Propagation parameters</b>: Some parameters modeling physical processes (SRP or drag coefficients etc...).<br>
43   *       They are also retrieved from the propagator builder during the initialization phase.</li>
44   *   <li><b>Measurements parameters</b>: Parameters related to measurements (station biases, positions etc...).<br>
45   *       They are passed down to the filter in its constructor.</li>
46   * </ol>
47   * <p>
48   * The Kalman filter implementation used is provided by the underlying mathematical library Hipparchus.
49   * All the variables seen by Hipparchus (states, covariances...) are normalized
50   * using a specific scale for each estimated parameters or standard deviation noise for each measurement components.
51   * </p>
52   *
53   * <p>An {@link SemiAnalyticalUnscentedKalmanEstimator} object is built using the {@link SemiAnalyticalUnscentedKalmanEstimatorBuilder#build() build}
54   * method of a {@link SemiAnalyticalUnscentedKalmanEstimatorBuilder}.</p>
55   *
56   * @author Gaƫtan Pierre
57   * @author Bryan Cazabonne
58   * @since 11.3
59   */
60  public class SemiAnalyticalUnscentedKalmanEstimator extends AbstractKalmanEstimator {
61  
62      /** Unscented Kalman filter process model. */
63      private final SemiAnalyticalUnscentedKalmanModel processModel;
64  
65      /** Filter. */
66      private final UnscentedKalmanFilter<MeasurementDecorator> filter;
67  
68      /** Dummy scale. */
69      private final double[] scale;
70  
71      /** Unscented Kalman filter estimator constructor (package private).
72       * @param decomposer decomposer to use for the correction phase
73       * @param propagatorBuilder propagator builder used to evaluate the orbit.
74       * @param processNoiseMatricesProvider provider for process noise matrix
75       * @param estimatedMeasurementParameters measurement parameters to estimate
76       * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
77       * @param utProvider provider for the unscented transform
78       */
79      SemiAnalyticalUnscentedKalmanEstimator(final MatrixDecomposer decomposer,
80                                             final DSSTPropagatorBuilder propagatorBuilder,
81                                             final CovarianceMatrixProvider processNoiseMatricesProvider,
82                                             final ParameterDriversList estimatedMeasurementParameters,
83                                             final CovarianceMatrixProvider measurementProcessNoiseMatrix,
84                                             final UnscentedTransformProvider utProvider) {
85          super(decomposer, Collections.singletonList(propagatorBuilder));
86          // Build the process model and measurement model
87          this.processModel = new SemiAnalyticalUnscentedKalmanModel(propagatorBuilder, processNoiseMatricesProvider,
88                                                                     estimatedMeasurementParameters, measurementProcessNoiseMatrix);
89  
90          // Unscented Kalman Filter of Hipparchus
91          this.filter = new UnscentedKalmanFilter<>(decomposer, processModel, processModel.getEstimate(), utProvider);
92  
93          // Fill dummy scale with 1s
94          final int dim = processModel.getEstimate().getState().getDimension();
95          this.scale = new double[dim];
96          Arrays.fill(scale, 1.0);
97  
98      }
99  
100     /** {@inheritDoc}. */
101     @Override
102     protected KalmanEstimation getKalmanEstimation() {
103         return processModel;
104     }
105 
106     /** {@inheritDoc}. */
107     @Override
108     protected KalmanFilter<MeasurementDecorator> getKalmanFilter() {
109         return filter;
110     }
111 
112     /** {@inheritDoc}. */
113     @Override
114     protected double[] getScale() {
115         return scale;
116     }
117 
118     /** {@inheritDoc}. */
119     @Override
120     public void setObserver(final KalmanObserver observer) {
121         processModel.setObserver(observer);
122         observer.init(getKalmanEstimation());
123     }
124 
125     /** {@inheritDoc}. */
126     @Override
127     public KalmanObserver getObserver() {
128         return processModel.getObserver();
129     }
130 
131     /** Process a single measurement.
132      * <p>
133      * Update the filter with the new measurement by calling the estimate method.
134      * </p>
135      * @param observedMeasurements the list of measurements to process
136      * @return estimated propagators
137      */
138     public DSSTPropagator processMeasurements(final List<ObservedMeasurement<?>> observedMeasurements) {
139         return processModel.processMeasurements(observedMeasurements, filter);
140     }
141 
142 }
143