1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.numerical;
18
19 import org.hipparchus.analysis.differentiation.Gradient;
20 import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
21 import org.hipparchus.linear.Array2DRowRealMatrix;
22 import org.hipparchus.linear.DecompositionSolver;
23 import org.hipparchus.linear.MatrixUtils;
24 import org.hipparchus.linear.QRDecomposition;
25 import org.hipparchus.linear.RealMatrix;
26 import org.orekit.errors.OrekitException;
27 import org.orekit.errors.OrekitMessages;
28 import org.orekit.forces.ForceModel;
29 import org.orekit.forces.gravity.ThirdBodyAttractionEpoch;
30 import org.orekit.propagation.FieldSpacecraftState;
31 import org.orekit.propagation.SpacecraftState;
32 import org.orekit.propagation.integration.AdditionalDerivativesProvider;
33 import org.orekit.propagation.integration.CombinedDerivatives;
34 import org.orekit.utils.ParameterDriver;
35 import org.orekit.utils.ParameterDriversList;
36 import org.orekit.utils.TimeSpanMap.Span;
37
38 import java.util.IdentityHashMap;
39 import java.util.Map;
40
41 /** Computes derivatives of the acceleration, including ThirdBodyAttraction.
42 *
43 * {@link AdditionalDerivativesProvider Provider} computing the partial derivatives
44 * of the state (orbit) with respect to initial state and force models parameters.
45 * <p>
46 * This set of equations are automatically added to a {@link NumericalPropagator numerical propagator}
47 * in order to compute partial derivatives of the orbit along with the orbit itself. This is
48 * useful for example in orbit determination applications.
49 * </p>
50 * <p>
51 * The partial derivatives with respect to initial state can be either dimension 6
52 * (orbit only) or 7 (orbit and mass).
53 * </p>
54 * <p>
55 * The partial derivatives with respect to force models parameters has a dimension
56 * equal to the number of selected parameters. Parameters selection is implemented at
57 * {@link ForceModel force models} level. Users must retrieve a {@link ParameterDriver
58 * parameter driver} using {@link ForceModel#getParameterDriver(String)} and then
59 * select it by calling {@link ParameterDriver#setSelected(boolean) setSelected(true)}.
60 * </p>
61 * <p>
62 * If several force models provide different {@link ParameterDriver drivers} for the
63 * same parameter name, selecting any of these drivers has the side effect of
64 * selecting all the drivers for this shared parameter. In this case, the partial
65 * derivatives will be the sum of the partial derivatives contributed by the
66 * corresponding force models. This case typically arises for central attraction
67 * coefficient, which has an influence on {@link org.orekit.forces.gravity.NewtonianAttraction
68 * Newtonian attraction}, {@link org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel
69 * gravity field}, and {@link org.orekit.forces.gravity.Relativity relativity}.
70 * </p>
71 * @author Véronique Pommier-Maurussane
72 * @author Luc Maisonobe
73 * @since 10.2
74 */
75 public class EpochDerivativesEquations
76 implements AdditionalDerivativesProvider {
77
78 /** State dimension, fixed to 6. */
79 public static final int STATE_DIMENSION = 6;
80
81 /** Propagator computing state evolution. */
82 private final NumericalPropagator propagator;
83
84 /** Selected parameters for Jacobian computation. */
85 private ParameterDriversList selected;
86
87 /** Parameters map. */
88 private Map<String, Integer> map;
89
90 /** Name. */
91 private final String name;
92
93 /** Simple constructor.
94 * <p>
95 * Upon construction, this set of equations is <em>automatically</em> added to
96 * the propagator by calling its {@link
97 * NumericalPropagator#addAdditionalDerivativesProvider(AdditionalDerivativesProvider)} method. So
98 * there is no need to call this method explicitly for these equations.
99 * </p>
100 * @param name name of the partial derivatives equations
101 * @param propagator the propagator that will handle the orbit propagation
102 */
103 public EpochDerivativesEquations(final String name, final NumericalPropagator propagator) {
104 this.name = name;
105 this.selected = null;
106 this.map = null;
107 this.propagator = propagator;
108 propagator.addAdditionalDerivativesProvider(this);
109 }
110
111 /** {@inheritDoc} */
112 public String getName() {
113 return name;
114 }
115
116 /** {@inheritDoc} */
117 @Override
118 public int getDimension() {
119 freezeParametersSelection();
120 return 6 * (6 + selected.getNbParams() + 1);
121 }
122
123 /** Freeze the selected parameters from the force models.
124 */
125 private void freezeParametersSelection() {
126 if (selected == null) {
127
128 // first pass: gather all parameters, binding similar names together
129 selected = new ParameterDriversList();
130 for (final ForceModel provider : propagator.getAllForceModels()) {
131 for (final ParameterDriver driver : provider.getParametersDrivers()) {
132 selected.add(driver);
133 }
134 }
135
136 // second pass: now that shared parameter names are bound together,
137 // their selections status have been synchronized, we can filter them
138 selected.filter(true);
139
140 // third pass: sort parameters lexicographically
141 selected.sort();
142
143 // fourth pass: set up a map between parameters drivers and matrices columns
144 map = new IdentityHashMap<>();
145 int parameterIndex = 0;
146 int previousParameterIndex = 0;
147 for (final ParameterDriver selectedDriver : selected.getDrivers()) {
148 for (final ForceModel provider : propagator.getAllForceModels()) {
149 for (final ParameterDriver driver : provider.getParametersDrivers()) {
150 if (driver.getName().equals(selectedDriver.getName())) {
151 previousParameterIndex = parameterIndex;
152 for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
153 map.put(span.getData(), previousParameterIndex++);
154 }
155 }
156 }
157 }
158 parameterIndex = previousParameterIndex;
159 }
160
161 }
162 }
163
164 /** Set the initial value of the Jacobian with respect to state and parameter.
165 * <p>
166 * This method is equivalent to call {@link #setInitialJacobians(SpacecraftState,
167 * double[][], double[][])} with dYdY0 set to the identity matrix and dYdP set
168 * to a zero matrix.
169 * </p>
170 * <p>
171 * The force models parameters for which partial derivatives are desired,
172 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
173 * before this method is called, so proper matrices dimensions are used.
174 * </p>
175 * @param s0 initial state
176 * @return state with initial Jacobians added
177 */
178 public SpacecraftState setInitialJacobians(final SpacecraftState s0) {
179 freezeParametersSelection();
180 final int epochStateDimension = 6;
181 final double[][] dYdY0 = new double[epochStateDimension][epochStateDimension];
182 final double[][] dYdP = new double[epochStateDimension][selected.getNbValuesToEstimate() + 6];
183 for (int i = 0; i < epochStateDimension; ++i) {
184 dYdY0[i][i] = 1.0;
185 }
186 return setInitialJacobians(s0, dYdY0, dYdP);
187 }
188
189 /** Set the initial value of the Jacobian with respect to state and parameter.
190 * <p>
191 * The returned state must be added to the propagator (it is not done
192 * automatically, as the user may need to add more states to it).
193 * </p>
194 * <p>
195 * The force models parameters for which partial derivatives are desired,
196 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
197 * before this method is called, and the {@code dY1dP} matrix dimension <em>must</em>
198 * be consistent with the selection.
199 * </p>
200 * @param s1 current state
201 * @param dY1dY0 Jacobian of current state at time t₁ with respect
202 * to state at some previous time t₀ (must be 6x6)
203 * @param dY1dP Jacobian of current state at time t₁ with respect
204 * to parameters (may be null if no parameters are selected)
205 * @return state with initial Jacobians added
206 */
207 public SpacecraftState setInitialJacobians(final SpacecraftState s1,
208 final double[][] dY1dY0, final double[][] dY1dP) {
209
210 freezeParametersSelection();
211
212 // Check dimensions
213 final int stateDimEpoch = dY1dY0.length;
214 if (stateDimEpoch != 6 || stateDimEpoch != dY1dY0[0].length) {
215 throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_6X6,
216 stateDimEpoch, dY1dY0[0].length);
217 }
218 if (dY1dP != null && stateDimEpoch != dY1dP.length) {
219 throw new OrekitException(OrekitMessages.STATE_AND_PARAMETERS_JACOBIANS_ROWS_MISMATCH,
220 stateDimEpoch, dY1dP.length);
221 }
222
223 // store the matrices as a single dimension array
224 final double[] p = new double[STATE_DIMENSION * (STATE_DIMENSION + selected.getNbValuesToEstimate()) + 6];
225 setInitialJacobians(s1, dY1dY0, dY1dP, p);
226
227 // set value in propagator
228 return s1.addAdditionalData(name, p);
229
230 }
231
232 /** Set the Jacobian with respect to state into a one-dimensional additional state array.
233 * <p>
234 * This method converts the Jacobians to Cartesian parameters and put the converted data
235 * in the one-dimensional {@code p} array.
236 * </p>
237 * @param state spacecraft state
238 * @param dY1dY0 Jacobian of current state at time t₁
239 * with respect to state at some previous time t₀
240 * @param dY1dP Jacobian of current state at time t₁
241 * with respect to parameters (may be null if there are no parameters)
242 * @param p placeholder where to put the one-dimensional additional state
243 */
244 public void setInitialJacobians(final SpacecraftState state, final double[][] dY1dY0,
245 final double[][] dY1dP, final double[] p) {
246
247 // set up a converter
248 final RealMatrix dY1dC1 = MatrixUtils.createRealIdentityMatrix(STATE_DIMENSION);
249 final DecompositionSolver solver = new QRDecomposition(dY1dC1).getSolver();
250
251 // convert the provided state Jacobian
252 final RealMatrix dC1dY0 = solver.solve(new Array2DRowRealMatrix(dY1dY0, false));
253
254 // map the converted state Jacobian to one-dimensional array
255 int index = 0;
256 for (int i = 0; i < STATE_DIMENSION; ++i) {
257 for (int j = 0; j < STATE_DIMENSION; ++j) {
258 p[index++] = dC1dY0.getEntry(i, j);
259 }
260 }
261
262 if (selected.getNbValuesToEstimate() != 0) {
263 // convert the provided state Jacobian
264 final RealMatrix dC1dP = solver.solve(new Array2DRowRealMatrix(dY1dP, false));
265
266 // map the converted parameters Jacobian to one-dimensional array
267 for (int i = 0; i < STATE_DIMENSION; ++i) {
268 for (int j = 0; j < selected.getNbValuesToEstimate(); ++j) {
269 p[index++] = dC1dP.getEntry(i, j);
270 }
271 }
272 }
273
274 }
275
276 /** {@inheritDoc} */
277 public CombinedDerivatives combinedDerivatives(final SpacecraftState s) {
278
279 // initialize acceleration Jacobians to zero
280 final int paramDimEpoch = selected.getNbValuesToEstimate() + 1; // added epoch
281 final int dimEpoch = 3;
282 final double[][] dAccdParam = new double[dimEpoch][paramDimEpoch];
283 final double[][] dAccdPos = new double[dimEpoch][dimEpoch];
284 final double[][] dAccdVel = new double[dimEpoch][dimEpoch];
285
286 final NumericalGradientConverter fullConverter = new NumericalGradientConverter(s, 6, propagator.getAttitudeProvider());
287 final NumericalGradientConverter posOnlyConverter = new NumericalGradientConverter(s, 3, propagator.getAttitudeProvider());
288
289 // compute acceleration Jacobians, finishing with the largest force: Newtonian attraction
290 for (final ForceModel forceModel : propagator.getAllForceModels()) {
291 final NumericalGradientConverter converter = forceModel.dependsOnPositionOnly() ? posOnlyConverter : fullConverter;
292 final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
293 final Gradient[] parameters = converter.getParametersAtStateDate(dsState, forceModel);
294
295 final FieldVector3D<Gradient> acceleration = forceModel.acceleration(dsState, parameters);
296 final double[] derivativesX = acceleration.getX().getGradient();
297 final double[] derivativesY = acceleration.getY().getGradient();
298 final double[] derivativesZ = acceleration.getZ().getGradient();
299
300 // update Jacobians with respect to state
301 addToRow(derivativesX, 0, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
302 addToRow(derivativesY, 1, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
303 addToRow(derivativesZ, 2, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
304
305 int index = converter.getFreeStateParameters();
306 for (ParameterDriver driver : forceModel.getParametersDrivers()) {
307 if (driver.isSelected()) {
308 for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
309 final int parameterIndex = map.get(span.getData());
310 dAccdParam[0][parameterIndex] += derivativesX[index];
311 dAccdParam[1][parameterIndex] += derivativesY[index];
312 dAccdParam[2][parameterIndex] += derivativesZ[index];
313 ++index;
314 }
315 }
316 }
317
318 // Add the derivatives of the acceleration w.r.t. the Epoch
319 if (forceModel instanceof ThirdBodyAttractionEpoch) {
320 final double[] parametersValues = new double[] {parameters[0].getValue()};
321 final double[] derivatives = ((ThirdBodyAttractionEpoch) forceModel).getDerivativesToEpoch(s, parametersValues);
322 dAccdParam[0][paramDimEpoch - 1] += derivatives[0];
323 dAccdParam[1][paramDimEpoch - 1] += derivatives[1];
324 dAccdParam[2][paramDimEpoch - 1] += derivatives[2];
325 }
326
327 }
328
329 // the variational equations of the complete state Jacobian matrix have the following form:
330
331 // [ | ] [ | ] [ | ]
332 // [ Adot | Bdot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ A | B ]
333 // [ | ] [ | ] [ | ]
334 // ---------+--------- ------------------+------------------- * ------+------
335 // [ | ] [ | ] [ | ]
336 // [ Cdot | Ddot ] = [ dAcc/dPos | dAcc/dVel ] [ C | D ]
337 // [ | ] [ | ] [ | ]
338
339 // The A, B, C and D sub-matrices and their derivatives (Adot ...) are 3x3 matrices
340
341 // The expanded multiplication above can be rewritten to take into account
342 // the fixed values found in the sub-matrices in the left factor. This leads to:
343
344 // [ Adot ] = [ C ]
345 // [ Bdot ] = [ D ]
346 // [ Cdot ] = [ dAcc/dPos ] * [ A ] + [ dAcc/dVel ] * [ C ]
347 // [ Ddot ] = [ dAcc/dPos ] * [ B ] + [ dAcc/dVel ] * [ D ]
348
349 // The following loops compute these expressions taking care of the mapping of the
350 // (A, B, C, D) matrices into the single dimension array p and of the mapping of the
351 // (Adot, Bdot, Cdot, Ddot) matrices into the single dimension array pDot.
352
353 // copy C and E into Adot and Bdot
354 final int stateDim = 6;
355 final double[] p = s.getAdditionalState(getName());
356 final double[] pDot = new double[p.length];
357 System.arraycopy(p, dimEpoch * stateDim, pDot, 0, dimEpoch * stateDim);
358
359 // compute Cdot and Ddot
360 for (int i = 0; i < dimEpoch; ++i) {
361 final double[] dAdPi = dAccdPos[i];
362 final double[] dAdVi = dAccdVel[i];
363 for (int j = 0; j < stateDim; ++j) {
364 pDot[(dimEpoch + i) * stateDim + j] =
365 dAdPi[0] * p[j] + dAdPi[1] * p[j + stateDim] + dAdPi[2] * p[j + 2 * stateDim] +
366 dAdVi[0] * p[j + 3 * stateDim] + dAdVi[1] * p[j + 4 * stateDim] + dAdVi[2] * p[j + 5 * stateDim];
367 }
368 }
369
370 for (int k = 0; k < paramDimEpoch; ++k) {
371 // the variational equations of the parameters Jacobian matrix are computed
372 // one column at a time, they have the following form:
373 // [ ] [ | ] [ ] [ ]
374 // [ Edot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ E ] [ dVel/dParam = 0 ]
375 // [ ] [ | ] [ ] [ ]
376 // -------- ------------------+------------------- * ----- + --------------------
377 // [ ] [ | ] [ ] [ ]
378 // [ Fdot ] = [ dAcc/dPos | dAcc/dVel ] [ F ] [ dAcc/dParam ]
379 // [ ] [ | ] [ ] [ ]
380
381 // The E and F sub-columns and their derivatives (Edot, Fdot) are 3 elements columns.
382
383 // The expanded multiplication and addition above can be rewritten to take into
384 // account the fixed values found in the sub-matrices in the left factor. This leads to:
385
386 // [ Edot ] = [ F ]
387 // [ Fdot ] = [ dAcc/dPos ] * [ E ] + [ dAcc/dVel ] * [ F ] + [ dAcc/dParam ]
388
389 // The following loops compute these expressions taking care of the mapping of the
390 // (E, F) columns into the single dimension array p and of the mapping of the
391 // (Edot, Fdot) columns into the single dimension array pDot.
392
393 // copy F into Edot
394 final int columnTop = stateDim * stateDim + k;
395 pDot[columnTop] = p[columnTop + 3 * paramDimEpoch];
396 pDot[columnTop + paramDimEpoch] = p[columnTop + 4 * paramDimEpoch];
397 pDot[columnTop + 2 * paramDimEpoch] = p[columnTop + 5 * paramDimEpoch];
398
399 // compute Fdot
400 for (int i = 0; i < dimEpoch; ++i) {
401 final double[] dAdP = dAccdPos[i];
402 final double[] dAdV = dAccdVel[i];
403 pDot[columnTop + (dimEpoch + i) * paramDimEpoch] =
404 dAccdParam[i][k] +
405 dAdP[0] * p[columnTop] + dAdP[1] * p[columnTop + paramDimEpoch] + dAdP[2] * p[columnTop + 2 * paramDimEpoch] +
406 dAdV[0] * p[columnTop + 3 * paramDimEpoch] + dAdV[1] * p[columnTop + 4 * paramDimEpoch] + dAdV[2] * p[columnTop + 5 * paramDimEpoch];
407 }
408
409 }
410
411 return new CombinedDerivatives(pDot, null);
412
413 }
414
415 /** Fill Jacobians rows.
416 * @param derivatives derivatives of a component of acceleration (along either x, y or z)
417 * @param index component index (0 for x, 1 for y, 2 for z)
418 * @param freeStateParameters number of free parameters, either 3 (position),
419 * 6 (position-velocity) or 7 (position-velocity-mass)
420 * @param dAccdPos Jacobian of acceleration with respect to spacecraft position
421 * @param dAccdVel Jacobian of acceleration with respect to spacecraft velocity
422 */
423 private void addToRow(final double[] derivatives, final int index, final int freeStateParameters,
424 final double[][] dAccdPos, final double[][] dAccdVel) {
425
426 for (int i = 0; i < 3; ++i) {
427 dAccdPos[index][i] += derivatives[i];
428 }
429 if (freeStateParameters > 3) {
430 for (int i = 0; i < 3; ++i) {
431 dAccdVel[index][i] += derivatives[i + 3];
432 }
433 }
434
435 }
436
437 }
438