1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.bodies;
18  
19  import org.hipparchus.CalculusFieldElement;
20  import org.hipparchus.exception.MathRuntimeException;
21  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
22  import org.hipparchus.geometry.euclidean.threed.Vector3D;
23  import org.hipparchus.geometry.euclidean.twod.FieldVector2D;
24  import org.hipparchus.geometry.euclidean.twod.Vector2D;
25  import org.hipparchus.util.FastMath;
26  import org.hipparchus.util.MathArrays;
27  import org.hipparchus.util.Precision;
28  import org.orekit.errors.OrekitException;
29  import org.orekit.errors.OrekitMessages;
30  import org.orekit.frames.Frame;
31  
32  /**
33   * Modeling of a general three-axes ellipsoid.
34   * @since 7.0
35   * @author Luc Maisonobe
36   */
37  public class Ellipsoid {
38  
39      /** Frame at the ellipsoid center, aligned with principal axes. */
40      private final Frame frame;
41  
42      /** First semi-axis length. */
43      private final double a;
44  
45      /** Second semi-axis length. */
46      private final double b;
47  
48      /** Third semi-axis length. */
49      private final double c;
50  
51      /** Simple constructor.
52       * @param frame at the ellipsoid center, aligned with principal axes
53       * @param a first semi-axis length
54       * @param b second semi-axis length
55       * @param c third semi-axis length
56       */
57      public Ellipsoid(final Frame frame, final double a, final double b, final double c) {
58          this.frame = frame;
59          this.a     = a;
60          this.b     = b;
61          this.c     = c;
62      }
63  
64      /** Get the length of the first semi-axis.
65       * @return length of the first semi-axis (m)
66       */
67      public double getA() {
68          return a;
69      }
70  
71      /** Get the length of the second semi-axis.
72       * @return length of the second semi-axis (m)
73       */
74      public double getB() {
75          return b;
76      }
77  
78      /** Get the length of the third semi-axis.
79       * @return length of the third semi-axis (m)
80       */
81      public double getC() {
82          return c;
83      }
84  
85      /** Get the ellipsoid central frame.
86       * @return ellipsoid central frame
87       */
88      public Frame getFrame() {
89          return frame;
90      }
91  
92      /** Check if a point is inside the ellipsoid.
93       * @param point point to check, in the ellipsoid frame
94       * @return true if the point is inside the ellipsoid
95       * (or exactly on ellipsoid surface)
96       * @since 7.1
97       */
98      public boolean isInside(final Vector3D point) {
99          final double scaledX = point.getX() / a;
100         final double scaledY = point.getY() / b;
101         final double scaledZ = point.getZ() / c;
102         return scaledX * scaledX + scaledY * scaledY + scaledZ * scaledZ <= 1.0;
103     }
104 
105     /** Check if a point is inside the ellipsoid.
106      * @param point point to check, in the ellipsoid frame
107      * @return true if the point is inside the ellipsoid
108      * (or exactly on ellipsoid surface)
109      * @param <T> the type of the field elements
110      * @since 12.0
111      */
112     public <T extends CalculusFieldElement<T>> boolean isInside(final FieldVector3D<T> point) {
113         final T scaledX = point.getX().divide(a);
114         final T scaledY = point.getY().divide(b);
115         final T scaledZ = point.getZ().divide(c);
116         final T d2      = scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).add(scaledZ.multiply(scaledZ));
117         return d2.subtract(1.0).getReal() <= 0.0;
118     }
119 
120     /** Compute the 2D ellipse at the intersection of the 3D ellipsoid and a plane.
121      * @param planePoint point belonging to the plane, in the ellipsoid frame
122      * @param planeNormal normal of the plane, in the ellipsoid frame
123      * @return plane section or null if there are no intersections
124      * @exception MathRuntimeException if the norm of planeNormal is null
125      */
126     public Ellipse getPlaneSection(final Vector3D planePoint, final Vector3D planeNormal)
127         throws MathRuntimeException {
128 
129         // we define the points Q in the plane using two free variables τ and υ as:
130         // Q = P + τ u + υ v
131         // where u and v are two unit vectors belonging to the plane
132         // Q belongs to the 3D ellipsoid so:
133         // (xQ / a)² + (yQ / b)² + (zQ / c)² = 1
134         // combining both equations, we get:
135         //   (xP² + 2 xP (τ xU + υ xV) + (τ xU + υ xV)²) / a²
136         // + (yP² + 2 yP (τ yU + υ yV) + (τ yU + υ yV)²) / b²
137         // + (zP² + 2 zP (τ zU + υ zV) + (τ zU + υ zV)²) / c²
138         // = 1
139         // which can be rewritten:
140         // α τ² + β υ² + 2 γ τυ + 2 δ τ + 2 ε υ + ζ = 0
141         // with
142         // α =  xU²  / a² +  yU²  / b² +  zU²  / c² > 0
143         // β =  xV²  / a² +  yV²  / b² +  zV²  / c² > 0
144         // γ = xU xV / a² + yU yV / b² + zU zV / c²
145         // δ = xP xU / a² + yP yU / b² + zP zU / c²
146         // ε = xP xV / a² + yP yV / b² + zP zV / c²
147         // ζ =  xP²  / a² +  yP²  / b² +  zP²  / c² - 1
148         // this is the equation of a conic (here an ellipse)
149         // Of course, we note that if the point P belongs to the ellipsoid
150         // then ζ = 0 and the equation holds at point P since τ = 0 and υ = 0
151         final Vector3D u     = planeNormal.orthogonal();
152         final Vector3D v     = Vector3D.crossProduct(planeNormal, u).normalize();
153         final double xUOa    = u.getX() / a;
154         final double yUOb    = u.getY() / b;
155         final double zUOc    = u.getZ() / c;
156         final double xVOa    = v.getX() / a;
157         final double yVOb    = v.getY() / b;
158         final double zVOc    = v.getZ() / c;
159         final double xPOa    = planePoint.getX() / a;
160         final double yPOb    = planePoint.getY() / b;
161         final double zPOc    = planePoint.getZ() / c;
162         final double alpha   = xUOa * xUOa + yUOb * yUOb + zUOc * zUOc;
163         final double beta    = xVOa * xVOa + yVOb * yVOb + zVOc * zVOc;
164         final double gamma   = MathArrays.linearCombination(xUOa, xVOa, yUOb, yVOb, zUOc, zVOc);
165         final double delta   = MathArrays.linearCombination(xPOa, xUOa, yPOb, yUOb, zPOc, zUOc);
166         final double epsilon = MathArrays.linearCombination(xPOa, xVOa, yPOb, yVOb, zPOc, zVOc);
167         final double zeta    = MathArrays.linearCombination(xPOa, xPOa, yPOb, yPOb, zPOc, zPOc, 1, -1);
168 
169         // reduce the general equation α τ² + β υ² + 2 γ τυ + 2 δ τ + 2 ε υ + ζ = 0
170         // to canonical form (λ/l)² + (μ/m)² = 1
171         // using a coordinates change
172         //       τ = τC + λ cosθ - μ sinθ
173         //       υ = υC + λ sinθ + μ cosθ
174         // or equivalently
175         //       λ =   (τ - τC) cosθ + (υ - υC) sinθ
176         //       μ = - (τ - τC) sinθ + (υ - υC) cosθ
177         // τC and υC are the coordinates of the 2D ellipse center with respect to P
178         // 2l and 2m and are the axes lengths (major or minor depending on which one is greatest)
179         // θ is the angle of the 2D ellipse axis corresponding to axis with length 2l
180 
181         // choose θ in order to cancel the coupling term in λμ
182         // expanding the general equation, we get: A λ² + B μ² + C λμ + D λ + E μ + F = 0
183         // with C = 2[(β - α) cosθ sinθ + γ (cos²θ - sin²θ)]
184         // hence the term is cancelled when θ = arctan(t), with γ t² + (α - β) t - γ = 0
185         // As the solutions of the quadratic equation obey t₁t₂ = -1, they correspond to
186         // angles θ in quadrature to each other. Selecting one solution or the other simply
187         // exchanges the principal axes. As we don't care about which axis we want as the
188         // first one, we select an arbitrary solution
189         final double tanTheta;
190         if (FastMath.abs(gamma) < Precision.SAFE_MIN) {
191             tanTheta = 0.0;
192         } else {
193             final double bMA = beta - alpha;
194             tanTheta = (bMA >= 0) ?
195                        (-2 * gamma / (bMA + FastMath.sqrt(bMA * bMA + 4 * gamma * gamma))) :
196                        (-2 * gamma / (bMA - FastMath.sqrt(bMA * bMA + 4 * gamma * gamma)));
197         }
198         final double tan2   = tanTheta * tanTheta;
199         final double cos2   = 1 / (1 + tan2);
200         final double sin2   = tan2 * cos2;
201         final double cosSin = tanTheta * cos2;
202         final double cos    = FastMath.sqrt(cos2);
203         final double sin    = tanTheta * cos;
204 
205         // choose τC and υC in order to cancel the linear terms in λ and μ
206         // expanding the general equation, we get: A λ² + B μ² + C λμ + D λ + E μ + F = 0
207         // with D = 2[ (α τC + γ υC + δ) cosθ + (γ τC + β υC + ε) sinθ]
208         //      E = 2[-(α τC + γ υC + δ) sinθ + (γ τC + β υC + ε) cosθ]
209         // θ can be eliminated by combining the equations
210         // D cosθ - E sinθ = 2[α τC + γ υC + δ]
211         // E cosθ + D sinθ = 2[γ τC + β υC + ε]
212         // hence the terms D and E are both cancelled (regardless of θ) when
213         //     τC = (β δ - γ ε) / (γ² - α β)
214         //     υC = (α ε - γ δ) / (γ² - α β)
215         final double denom = MathArrays.linearCombination(gamma, gamma,   -alpha, beta);
216         final double tauC  = MathArrays.linearCombination(beta,  delta,   -gamma, epsilon) / denom;
217         final double nuC   = MathArrays.linearCombination(alpha, epsilon, -gamma, delta)   / denom;
218 
219         // compute l and m
220         // expanding the general equation, we get: A λ² + B μ² + C λμ + D λ + E μ + F = 0
221         // with A = α cos²θ + β sin²θ + 2 γ cosθ sinθ
222         //      B = α sin²θ + β cos²θ - 2 γ cosθ sinθ
223         //      F = α τC² + β υC² + 2 γ τC υC + 2 δ τC + 2 ε υC + ζ
224         // hence we compute directly l = √(-F/A) and m = √(-F/B)
225         final double twogcs = 2 * gamma * cosSin;
226         final double bigA   = alpha * cos2 + beta * sin2 + twogcs;
227         final double bigB   = alpha * sin2 + beta * cos2 - twogcs;
228         final double bigF   = (alpha * tauC + 2 * (gamma * nuC + delta)) * tauC +
229                               (beta * nuC + 2 * epsilon) * nuC + zeta;
230         final double l      = FastMath.sqrt(-bigF / bigA);
231         final double m      = FastMath.sqrt(-bigF / bigB);
232         if (Double.isNaN(l + m)) {
233             // the plane does not intersect the ellipsoid
234             return null;
235         }
236 
237         if (l > m) {
238             return new Ellipse(new Vector3D(1, planePoint, tauC, u, nuC, v),
239                                new Vector3D( cos, u, sin, v),
240                                new Vector3D(-sin, u, cos, v),
241                                l, m, frame);
242         } else {
243             return new Ellipse(new Vector3D(1, planePoint, tauC, u, nuC, v),
244                                new Vector3D(sin, u, -cos, v),
245                                new Vector3D(cos, u,  sin, v),
246                                m, l, frame);
247         }
248 
249     }
250 
251     /** Compute the 2D ellipse at the intersection of the 3D ellipsoid and a plane.
252      * @param planePoint point belonging to the plane, in the ellipsoid frame
253      * @param planeNormal normal of the plane, in the ellipsoid frame
254      * @return plane section or null if there are no intersections
255      * @exception MathRuntimeException if the norm of planeNormal is null
256      * @param <T> the type of the field elements
257      * @since 12.0
258      */
259     public <T extends CalculusFieldElement<T>> FieldEllipse<T> getPlaneSection(final FieldVector3D<T> planePoint, final FieldVector3D<T> planeNormal)
260         throws MathRuntimeException {
261 
262         final T zero = planePoint.getX().getField().getZero();
263         final T one  = planePoint.getX().getField().getOne();
264 
265         // we define the points Q in the plane using two free variables τ and υ as:
266         // Q = P + τ u + υ v
267         // where u and v are two unit vectors belonging to the plane
268         // Q belongs to the 3D ellipsoid so:
269         // (xQ / a)² + (yQ / b)² + (zQ / c)² = 1
270         // combining both equations, we get:
271         //   (xP² + 2 xP (τ xU + υ xV) + (τ xU + υ xV)²) / a²
272         // + (yP² + 2 yP (τ yU + υ yV) + (τ yU + υ yV)²) / b²
273         // + (zP² + 2 zP (τ zU + υ zV) + (τ zU + υ zV)²) / c²
274         // = 1
275         // which can be rewritten:
276         // α τ² + β υ² + 2 γ τυ + 2 δ τ + 2 ε υ + ζ = 0
277         // with
278         // α =  xU²  / a² +  yU²  / b² +  zU²  / c² > 0
279         // β =  xV²  / a² +  yV²  / b² +  zV²  / c² > 0
280         // γ = xU xV / a² + yU yV / b² + zU zV / c²
281         // δ = xP xU / a² + yP yU / b² + zP zU / c²
282         // ε = xP xV / a² + yP yV / b² + zP zV / c²
283         // ζ =  xP²  / a² +  yP²  / b² +  zP²  / c² - 1
284         // this is the equation of a conic (here an ellipse)
285         // Of course, we note that if the point P belongs to the ellipsoid
286         // then ζ = 0 and the equation holds at point P since τ = 0 and υ = 0
287         final FieldVector3D<T> u     = planeNormal.orthogonal();
288         final FieldVector3D<T> v     = FieldVector3D.crossProduct(planeNormal, u).normalize();
289         final T xUOa    = u.getX().divide(a);
290         final T yUOb    = u.getY().divide(b);
291         final T zUOc    = u.getZ().divide(c);
292         final T xVOa    = v.getX().divide(a);
293         final T yVOb    = v.getY().divide(b);
294         final T zVOc    = v.getZ().divide(c);
295         final T xPOa    = planePoint.getX().divide(a);
296         final T yPOb    = planePoint.getY().divide(b);
297         final T zPOc    = planePoint.getZ().divide(c);
298         final T alpha   = xUOa.multiply(xUOa).add(yUOb.multiply(yUOb)).add(zUOc.multiply(zUOc));
299         final T beta    = xVOa.multiply(xVOa).add(yVOb.multiply(yVOb)).add(zVOc.multiply(zVOc));
300         final T gamma   = alpha.linearCombination(xUOa, xVOa, yUOb, yVOb, zUOc, zVOc);
301         final T delta   = alpha.linearCombination(xPOa, xUOa, yPOb, yUOb, zPOc, zUOc);
302         final T epsilon = alpha.linearCombination(xPOa, xVOa, yPOb, yVOb, zPOc, zVOc);
303         final T zeta    = alpha.linearCombination(xPOa, xPOa, yPOb, yPOb, zPOc, zPOc, one, one.negate());
304 
305         // reduce the general equation α τ² + β υ² + 2 γ τυ + 2 δ τ + 2 ε υ + ζ = 0
306         // to canonical form (λ/l)² + (μ/m)² = 1
307         // using a coordinates change
308         //       τ = τC + λ cosθ - μ sinθ
309         //       υ = υC + λ sinθ + μ cosθ
310         // or equivalently
311         //       λ =   (τ - τC) cosθ + (υ - υC) sinθ
312         //       μ = - (τ - τC) sinθ + (υ - υC) cosθ
313         // τC and υC are the coordinates of the 2D ellipse center with respect to P
314         // 2l and 2m and are the axes lengths (major or minor depending on which one is greatest)
315         // θ is the angle of the 2D ellipse axis corresponding to axis with length 2l
316 
317         // choose θ in order to cancel the coupling term in λμ
318         // expanding the general equation, we get: A λ² + B μ² + C λμ + D λ + E μ + F = 0
319         // with C = 2[(β - α) cosθ sinθ + γ (cos²θ - sin²θ)]
320         // hence the term is cancelled when θ = arctan(t), with γ t² + (α - β) t - γ = 0
321         // As the solutions of the quadratic equation obey t₁t₂ = -1, they correspond to
322         // angles θ in quadrature to each other. Selecting one solution or the other simply
323         // exchanges the principal axes. As we don't care about which axis we want as the
324         // first one, we select an arbitrary solution
325         final T tanTheta;
326         if (FastMath.abs(gamma.getReal()) < Precision.SAFE_MIN) {
327             tanTheta = zero;
328         } else {
329             final T bMA = beta.subtract(alpha);
330             tanTheta = (bMA.getReal() >= 0) ?
331                        gamma.multiply(-2).divide(bMA.add(FastMath.sqrt(bMA.multiply(bMA).add(gamma.multiply(gamma).multiply(4))))) :
332                        gamma.multiply(-2).divide(bMA.subtract(FastMath.sqrt(bMA.multiply(bMA).add(gamma.multiply(gamma).multiply(4)))));
333         }
334         final T tan2   = tanTheta.multiply(tanTheta);
335         final T cos2   = tan2.add(1).reciprocal();
336         final T sin2   = tan2.multiply(cos2);
337         final T cosSin = tanTheta.multiply(cos2);
338         final T cos    = FastMath.sqrt(cos2);
339         final T sin    = tanTheta.multiply(cos);
340 
341         // choose τC and υC in order to cancel the linear terms in λ and μ
342         // expanding the general equation, we get: A λ² + B μ² + C λμ + D λ + E μ + F = 0
343         // with D = 2[ (α τC + γ υC + δ) cosθ + (γ τC + β υC + ε) sinθ]
344         //      E = 2[-(α τC + γ υC + δ) sinθ + (γ τC + β υC + ε) cosθ]
345         // θ can be eliminated by combining the equations
346         // D cosθ - E sinθ = 2[α τC + γ υC + δ]
347         // E cosθ + D sinθ = 2[γ τC + β υC + ε]
348         // hence the terms D and E are both cancelled (regardless of θ) when
349         //     τC = (β δ - γ ε) / (γ² - α β)
350         //     υC = (α ε - γ δ) / (γ² - α β)
351         final T invDenom = gamma.linearCombination(gamma, gamma,   alpha.negate(), beta).reciprocal();
352         final T tauC     = gamma.linearCombination(beta,  delta,   gamma.negate(), epsilon).multiply(invDenom);
353         final T nuC      = gamma.linearCombination(alpha, epsilon, gamma.negate(), delta).multiply(invDenom);
354 
355         // compute l and m
356         // expanding the general equation, we get: A λ² + B μ² + C λμ + D λ + E μ + F = 0
357         // with A = α cos²θ + β sin²θ + 2 γ cosθ sinθ
358         //      B = α sin²θ + β cos²θ - 2 γ cosθ sinθ
359         //      F = α τC² + β υC² + 2 γ τC υC + 2 δ τC + 2 ε υC + ζ
360         // hence we compute directly l = √(-F/A) and m = √(-F/B)
361         final T twogcs = gamma.multiply(cosSin).multiply(2);
362         final T bigA   = alpha.multiply(cos2).add(beta.multiply(sin2)).add(twogcs);
363         final T bigB   = alpha.multiply(sin2).add(beta.multiply(cos2)).subtract(twogcs);
364         final T bigFN  = alpha.multiply(tauC).add(gamma.multiply(nuC).add(delta).multiply(2)).multiply(tauC).
365                          add(beta.multiply(nuC).add(epsilon.multiply(2)).multiply(nuC)).
366                          add(zeta).
367                          negate();
368         final T l      = FastMath.sqrt(bigFN.divide(bigA));
369         final T m      = FastMath.sqrt(bigFN.divide(bigB));
370         if (l.add(m).isNaN()) {
371             // the plane does not intersect the ellipsoid
372             return null;
373         }
374 
375         if (l.subtract(m).getReal() > 0) {
376             return new FieldEllipse<>(new FieldVector3D<>(tauC.getField().getOne(), planePoint, tauC, u, nuC, v),
377                                       new FieldVector3D<>(cos,          u, sin, v),
378                                       new FieldVector3D<>(sin.negate(), u, cos, v),
379                                       l, m, frame);
380         } else {
381             return new FieldEllipse<>(new FieldVector3D<>(tauC.getField().getOne(), planePoint, tauC, u, nuC, v),
382                                       new FieldVector3D<>(sin, u, cos.negate(), v),
383                                       new FieldVector3D<>(cos, u, sin,          v),
384                                       m, l, frame);
385         }
386 
387     }
388 
389     /** Find a point on ellipsoid limb, as seen by an external observer.
390      * @param observer observer position in ellipsoid frame
391      * @param outside point outside ellipsoid in ellipsoid frame, defining the phase around limb
392      * @return point on ellipsoid limb
393      * @exception MathRuntimeException if ellipsoid center, observer and outside
394      * points are aligned
395      * @since 7.1
396      */
397     public Vector3D pointOnLimb(final Vector3D observer, final Vector3D outside)
398         throws MathRuntimeException {
399 
400         // There is no limb if we are inside the ellipsoid
401         if (isInside(observer)) {
402             throw new OrekitException(OrekitMessages.POINT_INSIDE_ELLIPSOID);
403         }
404         // Cut the ellipsoid, to find an elliptical plane section
405         final Vector3D normal  = Vector3D.crossProduct(observer, outside);
406         final Ellipse  section = getPlaneSection(Vector3D.ZERO, normal);
407 
408         // the point on limb is tangential to the ellipse
409         // if T(xt, yt) is an ellipse point at which the tangent is drawn
410         // if O(xo, yo) is a point outside of the ellipse belonging to the tangent at T,
411         // then the two following equations holds:
412         // (1) a² yt²   + b² xt²   = a² b²  (T belongs to the ellipse)
413         // (2) a² yt yo + b² xt xo = a² b²  (TP is tangent to the ellipse)
414         // using the second equation to eliminate yt from the first equation, we get
415         // b² (a² - xt xo)² + a² xt² yo² = a⁴ yo²
416         // (3) (a² yo² + b² xo²) xt² - 2 a² b² xo xt + a⁴ (b² - yo²) = 0
417         // which can easily be solved for xt
418 
419         // To avoid numerical errors, the x and y coordinates in the ellipse plane are normalized using:
420         // x' = x / a and y' = y / b
421         //
422         // This gives:
423         // (1) y't² + x't² = 1
424         // (2) y't y'o + x't x'o = 1
425         //
426         // And finally:
427         // (3) (x'o² + y'o²) x't² - 2 x't x'o + 1 - y'o² = 0
428         //
429         // Solving for x't, we get the reduced discriminant:
430         // delta' = beta'² - alpha' * gamma'
431         //
432         // With:
433         // beta' = x'o
434         // alpha' = x'o² + y'o²
435         // gamma' = 1 - y'o²
436         //
437         // Simplifying to  cancel a term of x'o².
438         // delta' = y'o² (x'o² + y'o² - 1) = y'o² (alpha' - 1)
439         //
440         // After solving for xt1, xt2 using (3) the values are substituted into (2) to
441         // compute yt1, yt2. Then terms of x'o may be canceled from the expressions for
442         // yt1 and yt2. Additionally a point discontinuity is removed at y'o=0 from both
443         // yt1 and yt2.
444         //
445         // y't1 = (y'o - x'o d) / (x'o² + y'o²)
446         // y't2 = (x'o y'o + d) / (x + sqrt(delta'))
447         //
448         // where:
449         // d = sign(y'o) sqrt(alpha' - 1)
450 
451         // Get the point in ellipse plane frame (2D)
452         final Vector2D observer2D = section.toPlane(observer);
453 
454         // Normalize and compute intermediary terms
455         final double ap = section.getA();
456         final double bp = section.getB();
457         final double xpo = observer2D.getX() / ap;
458         final double ypo = observer2D.getY() / bp;
459         final double xpo2 = xpo * xpo;
460         final double ypo2 = ypo * ypo;
461         final double   alphap      = ypo2 + xpo2;
462         final double   gammap      = 1. - ypo2;
463 
464         // Compute the roots
465         // We know there are two solutions as we already checked the point is outside ellipsoid
466         final double sqrt = FastMath.sqrt(alphap - 1);
467         final double sqrtp = FastMath.abs(ypo) * sqrt;
468         final double sqrtSigned = FastMath.copySign(sqrt, ypo);
469 
470         // Compute the roots (ordered by value)
471         final double   xpt1;
472         final double   xpt2;
473         final double   ypt1;
474         final double   ypt2;
475         if (xpo > 0) {
476             final double s = xpo + sqrtp;
477             // xpt1 = (beta' + sqrt(delta')) / alpha' (with beta' = x'o)
478             xpt1 = s / alphap;
479             // x't2 = gamma' / (beta' + sqrt(delta')) since x't1 * x't2 = gamma' / alpha'
480             xpt2 = gammap / s;
481             // Get the corresponding values of y't
482             ypt1 = (ypo - xpo * sqrtSigned) / alphap;
483             ypt2 = (xpo * ypo + sqrtSigned) / s;
484         } else {
485             final double s = xpo - sqrtp;
486             // x't1 and x't2 are reverted compared to previous solution
487             xpt1 = gammap / s;
488             xpt2 = s / alphap;
489             // Get the corresponding values of y't
490             ypt2 = (ypo + xpo * sqrtSigned) / alphap;
491             ypt1 = (xpo * ypo - sqrtSigned) / s;
492         }
493 
494         // De-normalize and express the two solutions in 3D
495         final Vector3D tp1 = section.toSpace(new Vector2D(ap * xpt1, bp * ypt1));
496         final Vector3D tp2 = section.toSpace(new Vector2D(ap * xpt2, bp * ypt2));
497 
498         // Return the limb point in the direction of the outside point
499         return Vector3D.distance(tp1, outside) <= Vector3D.distance(tp2, outside) ? tp1 : tp2;
500 
501     }
502 
503     /** Find a point on ellipsoid limb, as seen by an external observer.
504      * @param observer observer position in ellipsoid frame
505      * @param outside point outside ellipsoid in ellipsoid frame, defining the phase around limb
506      * @return point on ellipsoid limb
507      * @exception MathRuntimeException if ellipsoid center, observer and outside
508      * points are aligned
509      * @param <T> the type of the field elements
510      * @since 12.0
511      */
512     public <T extends CalculusFieldElement<T>> FieldVector3D<T> pointOnLimb(final FieldVector3D<T> observer, final FieldVector3D<T> outside)
513         throws MathRuntimeException {
514 
515         // There is no limb if we are inside the ellipsoid
516         if (isInside(observer)) {
517             throw new OrekitException(OrekitMessages.POINT_INSIDE_ELLIPSOID);
518         }
519         // Cut the ellipsoid, to find an elliptical plane section
520         final FieldVector3D<T> normal  = FieldVector3D.crossProduct(observer, outside);
521         final FieldEllipse<T>  section = getPlaneSection(FieldVector3D.getZero(observer.getX().getField()), normal);
522 
523         // the point on limb is tangential to the ellipse
524         // if T(xt, yt) is an ellipse point at which the tangent is drawn
525         // if O(xo, yo) is a point outside of the ellipse belonging to the tangent at T,
526         // then the two following equations holds:
527         // (1) a² yt²   + b² xt²   = a² b²  (T belongs to the ellipse)
528         // (2) a² yt yo + b² xt xo = a² b²  (TP is tangent to the ellipse)
529         // using the second equation to eliminate yt from the first equation, we get
530         // b² (a² - xt xo)² + a² xt² yo² = a⁴ yo²
531         // (3) (a² yo² + b² xo²) xt² - 2 a² b² xo xt + a⁴ (b² - yo²) = 0
532         // which can easily be solved for xt
533 
534         // To avoid numerical errors, the x and y coordinates in the ellipse plane are normalized using:
535         // x' = x / a and y' = y / b
536         //
537         // This gives:
538         // (1) y't² + x't² = 1
539         // (2) y't y'o + x't x'o = 1
540         //
541         // And finally:
542         // (3) (x'o² + y'o²) x't² - 2 x't x'o + 1 - y'o² = 0
543         //
544         // Solving for x't, we get the reduced discriminant:
545         // delta' = beta'² - alpha' * gamma'
546         //
547         // With:
548         // beta' = x'o
549         // alpha' = x'o² + y'o²
550         // gamma' = 1 - y'o²
551         //
552         // Simplifying to  cancel a term of x'o².
553         // delta' = y'o² (x'o² + y'o² - 1) = y'o² (alpha' - 1)
554         //
555         // After solving for xt1, xt2 using (3) the values are substituted into (2) to
556         // compute yt1, yt2. Then terms of x'o may be canceled from the expressions for
557         // yt1 and yt2. Additionally a point discontinuity is removed at y'o=0 from both
558         // yt1 and yt2.
559         //
560         // y't1 = (y'o - x'o d) / (x'o² + y'o²)
561         // y't2 = (x'o y'o + d) / (x + sqrt(delta'))
562         //
563         // where:
564         // d = sign(y'o) sqrt(alpha' - 1)
565 
566         // Get the point in ellipse plane frame (2D)
567         final FieldVector2D<T> observer2D = section.toPlane(observer);
568 
569         // Normalize and compute intermediary terms
570         final T ap     = section.getA();
571         final T bp     = section.getB();
572         final T xpo    = observer2D.getX().divide(ap);
573         final T ypo    = observer2D.getY().divide(bp);
574         final T xpo2   = xpo.multiply(xpo);
575         final T ypo2   = ypo.multiply(ypo);
576         final T alphap = ypo2.add(xpo2);
577         final T gammap = ypo2.negate().add(1);
578 
579         // Compute the roots
580         // We know there are two solutions as we already checked the point is outside ellipsoid
581         final T sqrt = FastMath.sqrt(alphap.subtract(1));
582         final T sqrtp = FastMath.abs(ypo).multiply(sqrt);
583         final T sqrtSigned = FastMath.copySign(sqrt, ypo);
584 
585         // Compute the roots (ordered by value)
586         final T   xpt1;
587         final T   xpt2;
588         final T   ypt1;
589         final T   ypt2;
590         if (xpo.getReal() > 0) {
591             final T s = xpo.add(sqrtp);
592             // xpt1 = (beta' + sqrt(delta')) / alpha' (with beta' = x'o)
593             xpt1 = s.divide(alphap);
594             // x't2 = gamma' / (beta' + sqrt(delta')) since x't1 * x't2 = gamma' / alpha'
595             xpt2 = gammap.divide(s);
596             // Get the corresponding values of y't
597             ypt1 = ypo.subtract(xpo.multiply(sqrtSigned)).divide(alphap);
598             ypt2 = xpo.multiply(ypo).add(sqrtSigned).divide(s);
599         } else {
600             final T s = xpo.subtract(sqrtp);
601             // x't1 and x't2 are reverted compared to previous solution
602             xpt1 = gammap.divide(s);
603             xpt2 = s.divide(alphap);
604             // Get the corresponding values of y't
605             ypt2 = ypo.add(xpo.multiply(sqrtSigned)).divide(alphap);
606             ypt1 = xpo.multiply(ypo).subtract(sqrtSigned).divide(s);
607         }
608 
609         // De-normalize and express the two solutions in 3D
610         final FieldVector3D<T> tp1 = section.toSpace(new FieldVector2D<>(ap.multiply(xpt1), bp.multiply(ypt1)));
611         final FieldVector3D<T> tp2 = section.toSpace(new FieldVector2D<>(ap.multiply(xpt2), bp.multiply(ypt2)));
612 
613         // Return the limb point in the direction of the outside point
614         return FieldVector3D.distance(tp1, outside).subtract(FieldVector3D.distance(tp2, outside)).getReal() <= 0 ? tp1 : tp2;
615 
616     }
617 
618 }